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Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PPARGC1A) regulates the expression of energy
metabolism’s genes and mitochondrial biogenesis. The essential roles of PPARGC1A encouraged the researchers to assess the
relation between metabolism-related diseases and its variants. To study Gly482Ser (+1564G/A) single-nucleotide polymorphism
(SNP) after PPARGC1A modeling, we substitute Gly482 for Ser482. Stability prediction tools showed that this substitution
decreases the stability of PPARGC1A or has a destabilizing effect on this protein. We then utilized molecular dynamics
simulation of both the Gly482Ser variant and wild type of the PPARGC1A protein to analyze the structural changes and to
reveal the conformational flexibility of the PPARGC1A protein. We observed loss flexibility in the RMSD plot of the Gly482Ser
variant, which was further supported by a decrease in the SASA value in the Gly482Ser variant structure of PPARGC1A and an
increase of H-bond with the increase of β-sheet and coil and decrease of turn in the DSSP plot of the Gly482Ser variant. Such
alterations may significantly impact the structural conformation of the PPARGC1A protein, and it might also affect its function.
It showed that the Gly482Ser variant affects the PPARGC1A structure and makes the backbone less flexible to move. In general,
molecular dynamics simulation (MDS) showed more flexibility in the native PPARGC1A structure. Essential dynamics (ED)
also revealed that the range of eigenvectors in the conformational space has lower extension of motion in the Gly482Ser variant
compared with WT. The Gly482Ser variant also disrupts PPARGC1A interaction. Due to this single-nucleotide polymorphism
in PPARGC1A, it became more rigid and might disarray the structural conformation and catalytic function of the protein and
might also induce type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), and nonalcoholic fatty liver disease
(NAFLD). The results obtained from this study will assist wet lab research in expanding potent treatment on T2DM.

1. Introduction

Peroxisome proliferator-activated receptor-G coactivator
1-alpha (PPARGC1A, PGC-1α, or PGC-1) is a transcriptional
coactivator of peroxisome proliferator-activated receptor
gamma (PPAR-γ), which regulates the energy metabolism’s
genes and mitochondrial biogenesis [1, 2]. The nuclear
receptor PPAR-γ enables PPARGC1A to interact with vari-
ous transcription factors. PGC-1α also regulates the cAMP
(cyclic adenosine monophosphate) response element-

binding protein (CREB) and nuclear respiratory factors
(NRFs). The PGC-1α protein is also associated with con-
trolling blood pressure, cellular cholesterol homeostasis,
and obesity [3, 4]. Thus, the PGC-1α encoding gene plays
an essential role in cardiovascular and metabolic diseases.
It also regulates the pathophysiological processes contribut-
ing to coronary artery disease (CAD) [5–7].

PGC-1α regulates the gene expression of mitochondrial
fatty acid oxidation enzymes through interaction with perox-
isome proliferator-activated receptor- (PPAR-) alpha in the
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heart, brown adipose tissue, and liver [8]. PGC-1α also
increases glucose uptake in the muscles by regulating glucose
transporter 4 [9]. In addition, it increases the gene expression
of phosphoenolpyruvate carboxykinase and glucose-6-phos-
phatase, which is vital for hepatic gluconeogenesis [10].
These critical functions of PGC-1α in the regulation of
adaptive cellular energy metabolism, vascular stasis, oxida-
tive stress, and adipogenesis led to conducting a study on
the relationship between PPARGC1A variation and a range
of metabolism-related diseases [5].

Single-nucleotide polymorphisms (SNPs) are widely
divided into two distinct clusters, synonymous (csSNPs) and
nonsynonymous SNPs (nsSNPs) [11]. The nonsynonymous
SNPs are further divided into missense mutations and non-
sense mutations. The coding synonymous SNPs have a low
effect over protein structure, while the nonsynonymous SNPs
have a great impact on the protein structure and higher risk of
diseases [12, 13].

Thus, they have particular importance for additional
experimental assessment. In silico studies supply an efficient
platform for analysis and evaluation of genetic mutations for
their pathological consequence, and defining their underly-
ing molecular mechanism [14–18]. The G to A substitution
in exon 8 of the PGC-1a gene leads to the substitution of
glycine with serine in codon 482 that reduces PGC-1a expres-
sion and PGC-1a protein activity [19].

In the present study, we surveyed the literature on the
deleterious effect of SNP G>A Gly482Ser in the PPARGC1A
protein coding region. Despite the controversial results of
studies, many reports related the PPARGC1A gene’s poly-
morphisms to type 2 diabetes mellitus (T2DM), obesity,
and hypertension [20].

Gly482Ser (+1564G/A) polymorphism is one of the most
widely studied. Gly482Ser is the most critical and common
PPARGC1A gene SNPs, corresponding to a missense variant
in the coding sequence [6, 21]. Frequency of this variant in
the gnomAD database is 0.3 with 12728 homozygous and
77425 heterozygous. From the beginning, many of the studies
have reported associations of Gly482Ser (+1564G/A) variation
with diabetic complications [22–25]. We also investigated
the effect of Gly482Ser polymorphism on nonalcoholic fatty
liver disease (NAFLD) and the risk of coronary artery
disease (CAD) among patients with T2DM [26–28]. We
then used computational studied to further investigate this
polymorphism.

After we modeled the structure of PPARGC1A protein,
we substituted Gly482 with 482Ser and predicted the effect
of Gly482Ser variant on the stability of PPARGC1A using
prediction SNP tools. The molecular dynamics simulation
(MDS) is a promising approach to examine the conforma-
tional changes in the Gly482Ser variant structure with
respect to the native conformation [29–36]. Researches indi-
cate that MDS can detect the changes in protein phenotype
that significantly contribute towards confirming the damag-
ing consequences of computationally predicted disease-
associated mutations [16].

We focused on investigating that the changes in the
dynamic behavior of PPARGC1A was induced by the patho-
genic G>A Gly482Ser variant. Experimental studies have

indicated that G>A Gly482Ser variant causes disease. We
conducted MDS to reveal the conformational changes occur-
ring in the Gly482Ser variant structure which may account
for the observed molecular changes and the related patholog-
ical outcomes. The simulation also reveals the conforma-
tional flexibility of the Gly482Ser PPARGC1A variant to
show how this variant affects the protein and pathogenesis
of the related diseases. We also performed essential dynamics
(ED) and molecular docking for the survey of this variant. In
general, our results provide strong evidence of main confor-
mational drift occurring in the Gly482Ser variant as com-
pared to the native.

2. Materials and Methods

PPARGC1A sequence data was collected from the national
center for biological information (NCBI) protein sequence
database. rs8192678 (+1564G>A Gly482Ser) SNP informa-
tion for our computational analysis was retrieved from the
dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP/,
access date: February 30, 2019) [37]. The studies were per-
formed in the RCSB PDB (https://www.rcsb.org/) [38] and
UniProt (https://www.uniprot.org/uniprot/O75369) [39] data-
bases to find the suitable crystallographic structure of the
PGC-1α protein with ID Q9UBK2.

2.1. Modeling of Protein, Modeling Evaluation, and SNP
Creation. After investigating RCSB PDB, the appropriate
structure that includes the polymorphism site was not found
so the structure of PGC-1α was modeled.

As communitywide blind CASP experiments have
indicated which I-TASSER server can now create struc-
tural models with accuracy similar to the best human
expert-guided modeling [40] and compared with other
useful online structure prediction tools, the I-TASSER is
in the reliability and notable accuracy of full-length struc-
ture prediction for protein targets with various difficulty
and the wide structure-based function predictions [41].
Then, we selected I-TASSER (https://zhanglab.ccmb.med
.umich.edu/I-TASSER/) [42] server for modeling the human
PPARGC1A protein structure (with 798 aa). The quality of
the modeled PPARGC1A protein structure was evaluated
independently by the VADAR version 1.8 (http://vadar
.wishartlab.com/). Since our study was on the Gly482Ser
polymorphism, we replaced glycine residue of the wild-type
(WT) protein to serine residue in the variant using the SPDB
viewer [43]. The structures were minimized with YASARA
program [44] and were applied to the study.

2.2. Stability Analysis Using SNP Tools. Since a missense
polymorphism causes the alteration of the protein structure
and function, therefore, we predicted protein stability. A
number of recent studies have verified that implementing
multiple bioinformatics tools and algorithms increases the
accuracy of the results [45]. To evaluate the effect of the
amino acid substitution at 482 position on the stability of
wild-type PPARGC1A, we used the following stability
predictor tools. MUpro is an assembly of programs with
machine learning that computes the protein stability and
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changes based on sequence data, especially when the tertiary
structure is not subjected. This approach dominates signifi-
cant restrictions on previous approaches based on the tertiary
structure [46]. The CUPSAT tool evaluates and predicts pro-
tein stability based on mutations [47]. DynaMut can perform
rapid analysis of the protein stability and dynamics coming
from alterations in vibrational entropy [48]. DUET also pre-
dicts the effect of point mutations on the protein stability
through an embedded computational approach [49]. The
mCSM calculates the consequences of missense polymor-
phisms on the stability of protein, protein-protein binding,
and protein-DNA interaction [50]. SDM considers the
amino acid substitutions of different structural conditions
tolerated in the families of homologous proteins of specified
3D structures and converts them into possibility tables for
amino acid substitution [51]. I-Mutant2.0 calculations are
based on the protein structure or the protein sequence or
are based on prediction of protein stability of missense vari-
ants [52]. PANTHER also predicts evolutionary evaluation
of the coding SNPs [53]. To evaluate deleterious effect of
the Gly482Ser variant on the interaction of the PPARGC1A
protein, then to investigate the effect of the Gly482Ser variant
on the PPARGC1A function and interaction, we performed
molecular docking.

2.3. Protein-Protein Molecular Docking. Protein-protein
interactions have a significant role in different cellular pro-
cesses and are also involved in various diseases. They are also
a highly significant target for therapeutic interventions [54].
PPARGC1A is a transcriptional coactivator of peroxisome
proliferator-activated receptor gamma (PPAR-γ), which
regulates the energy metabolism’s genes and the mitochon-
drial biogenesis. The nuclear receptor PPAR-γ enables
PPARGC1A to interact with various transcription factors
[1, 2]. We employed ZDOCK (http://zdock.umassmed.edu/)
to evaluate deleterious effect of the Gly482Ser variant on the
interaction of the PPARGC1A protein with PPAR-γ. 292-
403 amino acids from PPARGC1A were selected as PPAR-γ
binding domain and 317, 351, 477, and 501 amino acids as
interaction site of PPAR-γ. ZDOCK uses the fast Fourier
transform algorithm for an efficient global docking on the
3D grid. ZDOCK also uses the combination of shape comple-
mentarity, electrostatic, and statistical potential for scoring the
docked complex [55].

2.4. Molecular Dynamics Simulation

2.4.1. MD Simulation. This study was performed using the
basic tool of GROMACS [56]. MDS was carried out with
the parallel version of PME in the GROMACS program. Each
one of structures was immersed in a dodecahedron-modeled
box (x, y, and z) with 238.58 nm3. SPC/E water molecules
were used to solvate the system. The nonbonded cut off was
set at 10Å, and every 5 steps, the nonbonded pair list was
updated. LINK mode was applied to constrain all hydrogen
bonds and motion equation integration [57]. MDS of
PPARGC1A was started through 1000 steps of energy mini-
mization with solvation within a dodecahedron-shaped
water cage with 1Å of the distance between protein periphery

and the cage edges. System neutralization was done by add-
ing 15 NA ions. Molecular dynamics simulation was per-
formed at 300 k (physiological temperature), pH = 7 using
GROMACS 4.6.5 (http://www.gromacs.org/), and the GRO-
MOS53a6 force field. Before the MDS run, the structures
were gained to a temperature of 300K and were equilibrated
during 100 ps under constant volume and temperature
(NVT). Next, the system was switched to continuous pres-
sure and temperature (NPT) and equilibrated for 100 ps.
All the periodic boundary condition functions were carried
out using the leap-frog algorithm with a 2 fs time step, and
every 500 steps, structural snapshots were flushed [56].
50 nsMD simulations of the Gly482Ser variant and the native
of PPARGC1A in 25 × 106 were steps individually done. The
cutoff radius of protein-solvent intramolecular hydrogen
bonds was 0.3 nm.

2.4.2. Analysis of Molecular Dynamics Trajectories. Structural
deviation analysis of the Gly482Ser variant and wild-type
protein such as root-mean-square deviation (RMSD), root-
mean-square fluctuation (RMSF), solvent accessible surface
area, gyration radius, hydrogen bond, and the secondary
structure of the protein (DSSP) was computed using g_rmsd,
g_rmsf, g_sasa, g_gyrate, g_hbond, and do_dssp built-in
functions of GROMACS package. GRACE software was used
to plot graphs (http://plasma-gate.weizmann.ac.il/Grace/) [58].

2.5. Essential Dynamics. Essential dynamics, known as prin-
cipal component analysis (PCA), can show the collective
atomic motion of the wild-type and Gly482Ser variant pro-
teins by the GROMACS tool [59]. Principal component anal-
ysis was computed using g_covar and g_anaeig built-in
functions of GROMACS package. PCA is a standard protocol
for the characterization of eigenvectors and the projection
across the first PC1 and PC2 [60].

3. Results

3.1. Protein Modeling, Modeling Evaluation, and Replacement
Gly to Ser at 482 Position in the PPARGC1A. The modeling
using I-TASSER gave five models. Model 3 with the highest
C-score was selected for further studies. Modeling evaluation
of Model 3 by VADAR server was showed 94% of the amino
acids of the modeled structure in the allowed area (Figure 1),
meaning that this model is suitable for further study. Amino
acid replacement was also done using SPDB viewer. In the
next step, the effect of Gly482Ser polymorphism on the struc-
ture and function of PPARGC1A was exhibited by SNP tools.

3.2. Stability Prediction with SNP Tools. It was demonstrated
that most of the disease-associated polymorphisms have a
significant influence on the protein stability. We used eight
different computational prediction tools based on different
algorithms to calculate the impact of the Gly482Ser variant
on the PPARGC1A structure and function. Stability of the
protein is often changed by SNPs. I-Mutant2.0 and MUpro
reported that the Gly482Ser variant decreases stability while
providing the DDG value (Table 1). PANTHER reported
that the Gly482Ser variant is probably damaging. Results
obtained from CUPSAT, DUET, DynaMut, mCSM, and

3PPAR Research

http://zdock.umassmed.edu/
http://www.gromacs.org/
http://plasma-gate.weizmann.ac.il/Grace/


SDM showed a destabilizing impact of the Gly482Ser var-
iant (Table 1). DGG of CUPSAT and PANTHER were not
provided. In the next step, we studied the effect of this
variant on the interactions of PPARGC1A.

3.3. Protein-Protein Molecular Docking. We carried out
molecular docking using a freely available ZDOCK online
server that predicts protein-protein complexes based on
rigid-body docking programs. We observed a ZDOCK score
of 1847.281 for native PPARGC1A protein interaction with
PPAR-γ protein compared with variant Gly482Ser with an
interaction score of 1663.332. This finding further strength-
ened our theory that SNP Gly482Ser has deleterious effects
on the structural and functional attributes of the PPARGC1A
protein. At the next step, we simulated the Gly482Ser variant
and native protein to explore conformational changes and
the Gly482Ser variant stability compared with the native
protein.

3.4. MD Simulation. MDS have been widely applied to
explore the structural consequences of the deleterious pre-
dicted SNPs. The results obtained from the above analysis
conducted prompted us to further explore the dynamic
behavior of the Gly482Ser variant and the native protein.
We analyzed the root-mean-square deviation (RMSD),
root-mean-square fluctuation (RMSF), radius of gyration
(Rg), solvent accessible surface area (SASA), number of
hydrogen bonds (NH), and secondary structure variation
(DSSP between the Gly482Ser variant and the native pro-
tein). RMSD was plotted to examine the stability of the native
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Figure 1: The Ramachandran plot in the evaluation of the 3D structure was modeled using VADAR server.

Table 1: SNP tools for the stability prediction of the Gly482Ser
variant with DDG.

Computational algorithms Prediction

I-Mutant2.0
DGG (kcal/mol)

Decreases stability
-0.83

MUpro
DGG (kcal/mol)

Decreases stability
-0.32

DUET
DGG (kcal/mol)

Destabilizing
-0.99

DGG (kcal/mol)
DynaMut

Destabilizing
-0.84

mCSM
DGG (kcal/mol)

Destabilizing
-0.99

SDM
DGG (kcal/mol)

Destabilizing
-3.33

CUPSAT
PANTHER

Destabilizing
Probably damaging
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protein to compare it with the stability of the variant protein
[61]. The Cα-RMSD is also a central origin to compute the
protein system [62]. RMSD of WT and Gly482Ser variant
started from 0.26 nm and increased to 1.47 nm in 8ns, and
at the end, the two plots came close together. The RMSD
value at the end gets to 1.48 nm in WT and 1.36 nm in the
Gly482Ser variant, and the RMSD plot of the Gly482Ser var-
iant was more balanced than WT (Figure 2(a)). This variant
decreased the flexibility of the PPARGC1A protein and had
less flexibility thanWT. The Cα-RMSF was plotted to analyze
the native protein flexibility and to compare it with the
Gly482Ser variant protein’s flexibility [61] (Figure 2(b)).

Rg is an indicator of the level of structure compaction,
i.e., the polypeptide is unfolded or folded, causing it to gain
and lose intramolecular H-bonds [63]. The competence,
shape, and folding of the overall PPARGC1A structure at
different time points during the trajectory can be seen in
the plot of Rg. The results showed the more compact struc-
ture for the Gly482Ser variant with 3.47 nm, but the Rg value
for WT was 3.58 nm (Figure 3(a)). The solvent-accessible
surface area (SASA) was monitored throughout all simula-
tions to measure the hydrophobic core’s compactness. The
SASA value for WT was 243nm2 and for Gly482Ser variant
was 237nm2. The difference is not negligible. The Gly482Ser
variant had less solvent-accessible surface area compared to
WT and also had a more compact structure (Figure 3(b)).
Hydrogen bonding maintains the conformation of a pro-
tein [63]. The number of hydrogen bonds was calculated
as 521 for WT and 571 for the Gly482Ser variant. The
Gly482Ser variant had higher hydrogen binding than WT
(Figure 3(c)), indicating more intramolecular H-bonds that
might result in a more rigid structure.

Additional information on the flexibility of the Gly482Ser
PPARGC1A variant was obtained by analyzing the time-
course of change in the secondary structures of the native
and Gly482Ser variant during 50ns MDS using the DSSP
program (Figure 4). The Gly482Ser variant had more second-
ary structures and tended to have a conserved secondary
structure. The Gly482Ser variant showed an increase of β-
sheet and coil and a decrease of turn than WT that both
alterations decrease flexibility (Table 2). This suggests that

the observed change in PPARGC1A due to this polymor-
phism is more related to structural changes.

3.5. Essential Dynamics. The dynamics of the Gly482Ser var-
iant and native proteins were obtained through a principal
component analysis (PCA) [64]. The projection of trajecto-
ries of the Gly482Ser variant and native proteins during the
molecular dynamic’s simulation in the phase space along
the first two principal components (PC1, PC2) at 300K is
plotted in Figure 5. It predicts the large-scale collective
motions for the Gly482Ser variant and native of the
PPARGC1A protein. PCA analysis showed that, due to
mutation, the structural dynamics is changing. The plot in
Figure 5(a) clearly shows that compared to the native, the
Gly482Ser variant occupied less space in the phase space
while the native occupied more space. The first 50 eigen-
vectors were selected to compute concerted motions
(Figure 5(b)). The eigenvalues were obtained from the
diagonalization of the covariance matrix of atomic fluctua-
tions. These results verify the overall increased flexibility
of the native over the Gly482Ser variant. We conclude that
the Gly482Ser variant causes the rigidity. The PCA analy-
sis results agree with the results from molecular docking
and MDS.

4. Discussion

PGC-1α has many functions as a transcriptional coactivator
of PPAR-γ such as regulating lipid and energy metabolism
[65]. Some studies regarding PGC-1α indicate that overex-
pression of PGC-1α reduces the accumulation of reactive
oxygen species (ROS) and decrease apoptosis. It plays a
protective role during oxidative stress connected at the
transcriptional level to the upregulation of the mitochondrial
antioxidant defense system by PGC-1α. PGC-1α also regu-
lates the metabolism of lipids and carbohydrates and
balances the consumption and storage of energy [6]. Insuffi-
ciency of this protein increases lipogenesis and hepatic stea-
tosis. PGC-1α and PPAR-α also interact with each other.
PPAR-α regulates the oxidation of fatty acids in fasting. This
protein is mainly expresses in the liver [65]. According to
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reports, in patients with type 2 insulin-resistant diabetes, the
PGC-1α responsive genes were downregulated [66]. In Patti
et al.’s investigation on diabetic Mexican-American, there
was a correlation between insulin resistance type 2 diabetes
and reducing PGC-1α in the skeletal muscle [67].

nsSNPs are SNPs that may alter protein conformation
and function and result in pathogenic phenotypes. Among

all PPARGC1A polymorphisms, the Gly482Ser variant has
been the most studied [68]. Its correlation with the risk of
type2 diabetes was reported in many studies. We performed
a superimposition of the Gly482Ser variant PPARGC1A
and wild type using UCSF Chimera tool [69] to explore the
effect of the Gly482Ser variant on the PPARGC1A structure.
We gained 0.633 RMSD, showing that the Gly482Ser variant

Table 2: Secondary structure percentage the Gly482Ser variant and native.

DSSP Structure Coil β-Sheet β-Bridge Bend Turn α-Helix 5-Helix 3-Helix

Variant 0.30 0.42 0.04 0.02 0.26 0.09 0.15 0.01 0.01

Native 0.38 0.38 0.02 0.02 0.23 0.13 0.21 0.00 0.02
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PC2. (b) Eigenvalues vs. eigenvector index plot was plotted for the first 50 eigenvectors, wild type (red) and variant (blue).
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has a remarkable impact on the PPARGC1A structure
(Figure 6).

This polymorphism probably triggers NAFLD and
CAD’s pathogenesis in type 2 diabetic patients by altering
the PGC-1α interaction with other transcription factors and
affecting oxidative stress and lipid metabolism [6, 70]. It
has also been suggested that Gly482Ser polymorphism corre-
lates with an increased risk of insulin resistance, obesity, and
type 2 diabetes [20, 70, 71]. In one study, Lai and colleagues

investigated the association among the PPARGC1A varia-
tions, including Gly482Ser, with DNA damage, diabetes,
and cardiovascular diseases. Their research showed that the
PPARGC1A variant has significant association with DNA
damages and these diseases [72]. In another study, Yongsa-
kulchai et al. suggested that the combination of PPAR-γ
C1431T, PGC-1α Gly482Ser, and LXRα−115G/A polymor-
phisms increase the risk of CAD and were predictive of the
severity of coronary atherosclerosis [73]. We studied the

Gly482
Ser482

Figure 6: Superimposition of secondary structures of the Gly482Ser variant and native by UCSF Chimera (Gly482 (cyan) : Ser482 (pink)).
The variation site was highlighted in red.
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in vitro effect of Gly482Ser polymorphism on NAFLD and
CAD’s pathogenesis in type 2 diabetic patients in two of
our previous studies [26, 27].

In the present study, we used SNP prediction tools and
found that the Gly482Ser variant causes instability of
PPARGC1A. Molecular docking shows that the native pro-
tein has a ZDOCK score higher than the variant, indicating
that the substitution of Gly for Ser disturbs the interaction
between PPARGC1A and PPAR-γ and causes disease and
deterioration in protein stabilization. Apparent instability
and loss flexibility were mostly seen in the RMSF, RMSD,
and SASA plots that were accompanied by a significant
number of intramolecular NH bonds for Gly482Ser when
compared to native PPARGC1A, and with an increase of β-
sheet and coil and decrease of turn in the DSSP plot of the
Gly482Ser variant.

We also found a relatively lower Rg value, which associ-
ates with a reduction in the Gly482Ser variant protein stabil-
ity. These results also correspond with the number of
intramolecular H-bonds and the results of DSSP. More intra-
molecular NH bonds in the Gly482Ser variant structure
might help its rigidity and make it nonflexible. This might
be due to the conserved secondary structure of the variant
which affects protein folding and might disorganize the
structural conformation and catalytic function of the protein
structure, as well as induce T2DM and NAFLD and CAD.
Therefore, we suggest that the Gly482Ser variant has a signif-
icant impact on protein function.

This study was further extended by analyzing PCA for
the Gly482Ser variant and native. The PCA analysis was
carried out to understand the collective residual motion of
the Gly482Ser variant and native. We observed a difference
in conformational changes in motions of Cα atoms of the
Gly482Ser variant in comparison with the wild type. This
may significantly impact the structural conformation of the
protein which also affects the function of the PPARGC1A
protein. Because this polymorphism made the PPARGC1A
structure more rigid, Gly482Ser polymorphism has a critical
damaging impact on protein function and its structural
orientation. This prediction is supported by the cited
experimental data [26, 27], and the results of this study
will help wet lab researchers expand potent treatments
against PPARGC1A.

5. Conclusion

The present study is an in-depth computational study into the
genotype–phenotype association of the deleterious Gly482Ser
variant in the PPARGC1A. We provided evidences of damag-
ing conformational changes in the PPARGC1A protein that
have a notable role in inducing disease-associated phenotypes.
We showed that the Gly482Ser variant in the PPARGC1A
protein can probably produce a disease-associated phenotypic
effect by having a major impact on the structural conforma-
tion of the PPARGC1A protein.

The stability of a protein is required for its correct func-
tion [13, 74–77]. The stability prediction tools found that this
variant decreases/destabilizes the PPARGC1A. Molecular
docking and molecular dynamics simulation indicated the

Gly482Ser variant has deleterious effects on the structural
and functional attributes of PPARGC1A, resulting in func-
tional and structural alterations in the PPARGC1A. The
analysis highlights the difference in the dynamics of
PPARGC1A variants. The dynamics of protein are depen-
dent on the structural flexibility of PPARGC1A [78], and
H-bonds are essential to stabilize the protein structure [79].
All MD results displayed the increased compactness of the
Gly482Ser variant structure. The PCA analysis also showed
that, due to mutation, the structures change their original
geometry. This may produce a major impact on the struc-
tural conformation of the PPARGC1A protein, resulting in
the loss of the protein function. This suggests that the
Gly482Ser variant protein is more compact or rigid than
the native protein and that this might result in decreasing
the PPARGC1A expression in patients with related diseases.
Due to the Gly482Ser variant, the structure becomes more
rigid and compact at the same time that it needs to fulfill
its native function of a maintaining proper conformational
geometry of the protein. The results of this study elucidate
the role of Gly482Ser polymorphism in PPARGC1A and
may provide useful information for the design of
PPARGC1A variant-based therapeutic strategies against
CAD, NAFLD, T2DM, obesity, hypertension, and meta-
bolic diseases.
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