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Hepatic ischemia-reperfusion injury (HIRI) is a common phenomenon in liver transplantation and liver surgery. This article
is aimed at clarifying the role of pemafibrate in HIRI through JAK2/STAT3β/PPARα. In the experiment, we divided Balb/c
into seven groups, namely, normal control (NC), Sham, PEM (1.0mg/kg), IRI, IRI + PEM (0.1mg/kg), IRI + PEM
(0.5mg/kg), and IRI + PEM (1.0mg/kg). We used biochemical assay, histopathological evaluation, immunohistochemistry,
RT-PCR and qRT-PCR, ELISA analysis, and other methods to determine the level of serum AST, ALT, IL-1β, and TNF-α
in the liver at three time points (2 h, 8 h, and 24 h) after reperfusion of apoptosis factor, autophagy factor, and the
JAK2/STAT3/PPARα content in tissues. Our experiment results showed that the pemafibrate can effectively reduce the
level of hepatic IR injury. In addition, pemafibrate has anti-inflammatory, antiapoptotic, and antiautophagy effects, which
are mediated by the JAK2/STAT3β/PPARα pathway.

1. Introduction

Hepatic ischemia-reperfusion injury (HIRI) is the injury
caused by reperfusion after liver ischemia [1, 2]. After the
blood supply to liver tissue was interrupted due to liver
ischemia, the subsequent blood reperfusion brings in a
large number of inflammatory cells, which leads to serious
damages to the structure and function of the liver [3–5].
Ischemia-reperfusion injury is a complicated pathophysio-
logical process. A large number of studies have shown that
HIRI, involving amounts of cells and multiple molecular
mechanisms, is characterized by oxidative stress and the
release of reactive oxygen species (ROS) [3, 6–8]. ROS is
the starting point that causes a cascade of reactions dom-
inated by inflammatory cells, cytokine release, apoptosis,
and autophagy [9, 10]. This damage not only affects the
liver but also has serious negative effects on the brain,
heart, kidneys, and gastrointestinal tract, which is a com-
plex systemic process.

When senescent macromolecular substances appear in
and damage the cells, the cells will initiate programmed cell
death. Autophagy, a kind of programmed cell death, is a
complex process that ensures the normal function of cells
and recirculates the digested materials to efficiently main-
tain the normal activities of cells [11]. Although autophagy
is considered to be a self-protection mechanism, excessive
upregulation can also cause cell death [12]. Apoptosis,
another kind of programmed cell death, has very obvious
morphological characteristics, including cell volume reduc-
tion, nuclear chromatin shrinkage, and the formation of
apoptotic bodies. There are two core molecular families of
the apoptosis pathway: the BCL-2 family and the Caspase
family [13].

Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) participate in signal transduction
induced by a number of cytokines and interferons in vivo.
After receiving the signal from JAK2, STAT3 forms the
dimer after phosphorylation and enters the nucleus to reg-

Hindawi
PPAR Research
Volume 2021, Article ID 6632137, 15 pages
https://doi.org/10.1155/2021/6632137

https://orcid.org/0000-0001-5581-4069
https://orcid.org/0000-0002-6527-4673
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6632137


ulate the transcription of related genes. STAT3 is mainly
involved in regulating cell proliferation, differentiation,
apoptosis, and inflammation [14–16]. There are two sub-
types of STAT3: STAT3α and STAT3β. Interestingly, stud-
ies have shown that STAT3α and STAT3β have opposite
effects on cancer, but the role of STAT3β in cells is still
controversial [17].

Peroxisome proliferator-activated receptor (PPAR) is a
member of the nuclear receptor superfamily [18]. As a
transcription factor, PPAR establishes a link between tran-
scription and signal molecules, including PPARα, PPARβ,
and PPARγ. PPARα is highly expressed in the liver, intes-
tinal epithelial cells, and cardiac muscle cells and plays an
important role in fatty acid oxidation. It will combine with
retinoid X receptor (RXR) to form a heterodimer, activate
the PPAR Response Element (PPRE) located in the
upstream of the target gene, and participate in the regula-
tion of nuclear factor κB (NF-κB) and activator protein 1
(AP-1) [18, 19]. Pemafibrate, a new type of selective
PPARα modulator (SPPARM α), enhances PPARα’s activ-
ity and has high selectivity by introducing side chains into
fibric acid. These side chains later form a Y-shaped struc-
ture and fill in the ligand binding site of PPARα, thereby
promoting massive activation of PPARα. Compared with
other fibrates, pemafibrate has a feature of basic EC50
value and higher selectivity. Pemafibrate could better aim
at specific targets and reduce the risk of binding multiple
sites.

Although there are many studies on HIRI, neither the
molecular mechanism nor effective drugs to this injury was
still not identified. Therefore, to find out the specific drugs
that can alleviate HIRI and to clarify the drug action mecha-
nism are urgent problems to be solved at present. We
hypothesized that pemafibrate can alleviate HIRI by inhibit-
ing inflammation, apoptosis, and autophagy and conducted
the following experiments.

2. Materials and Methods

2.1. Reagents. The pemafibrate was purchased from Med-
ChemExpress (Monmouth Junction, NJ, USA) and used by
adding 10% DMSO and 90% corn oil in our experiments.
The microplate test kits used for measuring the levels of ala-
nine aminotransferase (ALT) and aspartate aminotransferase
(AST) were bought from the Jiancheng Bioengineering Insti-
tute (Jiancheng Biotech, Nanjing, China). Enzyme-linked
immunosorbent assay (ELISA) kits were acquired from Ano-
gen (Ontario, Canada). The PrimeScript RT Reagent Kit and
SYBR Premix Ex Taq were purchased from TaKaRa Biotech-
nology (Dalian, China).

During the whole experimental process, we used many
antibodies, including anti-Bax, anti-caspase 3, anti-caspase
9, anti-Beclin-1, PPARα (Proteintech, Chicago, IL, USA),
anti-TNF-α, anti-Bcl-2, anti-microtubule associated protein
1 light chain 3 (LC3), anti-JAK2, anti-STAT3, anti-p-
STAT3 (Cell Signaling Technology, Danvers, MA, USA),
anti-IL-6, and anti-IL-1β (Antibody Revolution, San Diego,
CA, USA).

2.2. Animal Preparation. The protocol of this study was
approved by the Animal Care and Use Committee of Shang-
hai Tongji University. We handled and took care of the
animals under the guidance of the National Institutes of
Health Guidelines and tried our best to minimize the pain
and suffering of mice throughout the whole experiment.
We raised the male Balb/c mice (6–8 weeks old, 23 ± 2 g) pur-
chased from the Shanghai SLAC Laboratory Animal Co., Ltd.
(Shanghai, China) in a clean and temperature-controlled
environment at 24°C ± 2°C under a 12 h : 12 h/light : dark
cycle. In the environment, standard laboratory food and
water were available freely for mice.

2.3. Experimental Design. We divided the one hundred and
two mice randomly into seven groups as follows:

(1) Normal Control (NC). Six mice were only injected
with vehicle (10% DMSO and 90% corn oil)

(2) Sham. Eighteen mice took laparotomy after anesthe-
sia, and their abdominal cavity was stitched without
IRI

(3) PEM (1.0mg/kg). Six mice were only injected with
1.0mg/kg PEM

(4) IRI. Eighteen mice suffered ischemia and reperfusion

(5) IRI +PEM (0.1mg/kg). Before IRI, eighteen mice
were injected with 0.1mg/kg PEM for 5 days

(6) IRI +PEM (0.5mg/kg). Before IRI, eighteen mice
were injected with 0.5mg/kg PEM for 5 days

(7) IRI +PEM (1.0mg/kg). Before IRI, eighteen mice
were injected with 1.0mg/kg PEM for 5 days [20–22]

Given the pharmacokinetics and initial experiment of
PEM for 5 days before IRI, a certain dose of PEM determined
by a previous study and initial experiments was injected into
mice’s abdomens. At 2 h, 8 h, or 24 h after IRI, we randomly
killed six mice in each group and then collected blood and
liver tissues for further experiments.

2.4. Establishment of a Hepatic IRI Mouse Model. In this
experiment, we established a warm hepatic IRI animal model.
Before surgery, we kept mice not taking food for twelve hours
but allowed them to drink water freely, then used sodium
pentobarbital (40mg/kg, 1.25%) (Nembutal, St Louis, MO,
USA) to anesthetize the mice by intraperitoneal injection.
When the algesia of these mice disappears completely, we
started to perform laparotomy. After disinfecting the skin
with alcohol, we made an incision along the linea alba and
entered into the abdominal cavity through the incision. After
spotting the liver, we turned the hepatic lobes over to expose
the first porta hepatis. Following that, we clipped the portal
vein, hepatic artery, and common bile duct with microarter-
ial clamps to block the hepatic blood flow. Once hepatic
ischemia occurred, the color of liver lobes turned immedi-
ately from dark red to pale red. Then, we placed the mice
on an electric blanket to maintain their body temperature
with a humid saline gauze covered on their incisions. We
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removed the clamps after blocking the blood flow for 45min
and then let the blood flow back to the liver, by which the
liver completed a reperfusion process. In the final step, we
stitched the abdominal cavity and placed these mice on elec-
tric blankets [23, 24].

2.5. Biochemical Assays. We collected the orbital blood sam-
ples of the mice who had suffered hepatic ischemia and reper-
fusion processes, then extracted serum from the samples by
centrifuging at 2,000 × g at 4°C for 10min and stored it at
−80°C. Following the instructions of the manufacturer proto-
cols, we used the microplate test kits (Olympus AU1000,
Olympus, Tokyo, Japan) to detect serum levels of ALT and
AST and used the ELISA kits to measure serum levels of
IL-1β and TNF-α.

2.6. Histopathological Evaluation.We removed the liver from
the abdomen cavity of mice, then put the liver tissue in 4%
paraformaldehyde for twenty-four hours for renovation. On
the next day, we dehydrated it with ethanol of different con-
centrations. After that, we embedded paraffin into the tissues
and cut them into slices about 3μm thick. Finally, we stained
the slices with hematoxylin and eosin (H&E) to observe the
degree of damage.

2.7. Immunohistochemistry.We put these liver slices in a bak-
ing oven at 60°C for 20min to remove the residual wax on
them and then rehydrated the slices with xylene and ethanol.
After that, we retrieved the antigen by heating the slices at
95°C for 10min and then cooled them to 25°C. Blocking
endogenous peroxidase activity was achieved by immersing
the slices in hydrogen peroxide (H2O2) solution (3%) for
20min at 37°C. In order to avoid generating high back-
grounds, we used 5% bovine serum albumin to block nonspe-
cific binding sites for 1 h. Then, the liver slices were incubated
overnight with primary antibodies against Bcl-2 (1 : 500), Bax
(1 : 500), Beclin-1 (1 : 500), and LC3 (1 : 500) at 4°C. In the
next morning, we added the slices into a secondary antibody
which can bond the primary antibodies specifically and incu-
bated them for 1 h at 37°C. The efficacy of antibody binding
can be detected by a diaminobenzidine kit. Lastly, we
observed slices under an optical microscope.

2.8. Reverse Transcription Polymerase Chain Reaction (RT-
PCR) and Quantitative Real-Time PCR (qRT-PCR). All
RNAs of liver tissues were extracted by TRIzol reagent
(Thermo Fisher Scientific, Waltham, MA, USA) and then
reversely transcribed into cDNA. We performed qRT-PCR
by SYBR Premix EX Taq under the guidance of the manufac-
turer instructions to detect the level of mRNA with a 7900HT
Fast PCR System (Applied Biosystems, Foster City, CA,
USA). The primers were β-actin, forward GGCTGTATT
CCCCTCCATCG, reverse CCAGTTGGTAACAATGCCA
TGT; IL-1β, forward GAATGCCACCTTTTGACAGTG,
reverse TGGATGCTCTCATCAGGACAG; IL-6, forward
CTGCAAGAGACTTCCATCCAG, reverse AGTGGTATA
GACAGGTCTGTTGG; TNF-α, forward CAGGCGGTGCC
TATGTCTC, reverse CGATCACCCCGAAGTTCAGTAG;
Bcl-2, forward GCTACCGTCGTCGTGACTTCGC, reverse
CCCCACCGAACTCAAAGAAGG; Bax, forward AGAC

AGGGGCCTTTTTGCTAC, reverse AATTCGCCGGA
GACACTCG; Caspase 3, forward CTCGCTCTGGTACG
GATGTG, reverse TCCCATAAATGACCCCTTCATCA;
Caspase 9, forward GGCTGTTAAACCCCTAGACCA,
reverse TGACGGGTCCAGCTTCACTA; Beclin-1, forward
ATGGAGGGGTCTAAGGCGTC, reverse TGGGCTGTG
GTAAGTAATGGA; LC, forward GACCGCTGTAAGGA
GGTGC, reverse AGAAGCCGAAGGTTTCTTGGG; and
P62, forward GAGGCACCCCGAAACATGG, reverse
ACTTATAGCGAGTTCCCACCA.

2.9. Western Blot Analysis. We extracted the protein from
liver tissue by homogenizing with radioimmunoprecipita-
tion assay lysis buffer (Kaiji Biology, Nanjing, China),
phenylmethane-sulfonyl fluoride, and protease inhibitors.
The protein concentration was measured by a bicinchoninic
acid assay (Kaiji Biology). Before performing electrophoresis,
we boiled the protein samples at 100°C for 5min, then used
10% or 12.5% SDS-PAGE to separate proteins from protein
samples during electrophoresis at 120V. Next, we chose the
wet transfer method to transfer proteins onto polyvinylidene
fluoride membranes (Hybond™; Escondido, CA, USA). One
hour later, we used 5% nonfat milk to block the nonspecific
binding sites for at least 1 hour, then incubated the mem-
branes overnight at 4°C with the following primary antibod-
ies: anti-β-actin (1 : 1,000), anti-IL-6 (1 : 500), anti-TNF-α
(1 : 500), anti-Bcl-2 (1 : 1,000), anti-Bax (1 : 1,000), anti-
caspase 3 (1 : 500), anti-caspase 9 (1 : 500), anti-Beclin-1
(1 : 1,000), anti-LC3 (1 : 1,000), anti-JAK2 (1 : 1000), anti-
STAT3 (1 : 1000), and anti-p-STAT3 (1 : 1000). In the next
morning, we used the 0.1% Tween-contained PBST to wash
the membranes for three times, then incubated the mem-
branes with the secondary antibody for 1 h at 37°C, and
washed the membranes with PBST for another three times.
The aforementioned secondary antibody could be anti-
mouse or anti-rabbit antibodies (1 : 2000). Finally, we used
an Odyssey two-color infrared laser imaging system (Licor,
Lincoln, NE, USA) to observe the chromogenic results.

2.10. Statistical Analysis. In order to ensure the veracity of
our study, we performed all experiments at least three times
and presented the data as mean ± SD. We analyzed the data
and results of the serum levels of ALT, AST, Western blot,
ELISA, and qRT-PCR were analyzed by Student’s t-test or
two-way analysis of variance (followed by post hoc Dunnett’s
test). When the P values are less than 0.05, we consider the
results as statistically significant. All statistical graphs were
drawn by GraphPad Prism 8 (GraphPad Software, Inc., San
Diego, CA, USA).

3. Results

3.1. Pemafibrate and Surgery Will Not Produce Side Effects on
the Structure and Function of the Liver. In order to determine
whether liver damage is only caused by the model and
whether pemafibrate is hepatotoxic, we detected ALT and
AST in the blood samples of the NC group, Sham group,
and pemafibrate (1.0mg/kg) group of mice. The results
showed that there was no significant statistical difference in
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the levels of AST and ALT (Figure 1(a)). Observation on the
mouse liver tissues with H&E staining found that the struc-
ture and function of the liver tissues were not remarkably
changed in H&E-stained sections (Figure 1(b)). Therefore,
we believe that the concentration of pemafibrate and surgery
do not affect liver function.

3.2. Pemafibrate Pretreatment Can Relieve Liver IRI. By com-
paring H&E-stained sections, ALT and AST levels in Sham,
IR, low-dose, medium-dose, and high-dose groups, we found
that in the three time points, the liver tissues of the IRI group
were significantly damaged. However, the level of transami-
nase of the pemafibrate pretreated group decreased, and the
effect of high concentration of pemafibrate in alleviating
damage was better than that of low concentration, which
was dose-dependent (Figure 2(a)). Observation by optical
microscope found that there was no obvious damage in the
Sham group, but the liver tissue in the IRI group showed
structural changes, such as ballooning, necrosis, and inflam-
matory cell infiltration. Especially at the time point of 8 h, the
liver injury in the IRI group was more severe. However, these
changes were relieved in the PEM-treated group. In short,
these experimental results once again corroborate the afore-
mentioned conclusion: liver damage is mainly caused by
the vascular ligation instead of the surgical operation. In
addition, H&E results indicate that pemafibrate can alleviate
the inflammatory damage and necrosis of IRI (Figure 2(b)).

3.3. Pemafibrate Inhibits Inflammation. Based on the above
H&E staining results, the expression levels of common
inflammatory factors—IL-1β, IL-6, and TNF-α—were
detected. We tested the expression levels in liver tissues by
ELISA (Figure 3(a)) and found that in the three time periods,
the expression level of IRI group was significantly higher
than that of the Sham group. However, under the interven-
tion of pemafibrate, the level of inflammatory factors
decreased in a dose-dependent manner. The qRT-PCR
(Figure 3(b)) and Western blot analysis (Figures 3(c) and
3(d)) results also showed that IL-1β and TNF-α were signif-
icantly increased. And IHC showed that the levels of IL-1β
and TNF-α were lower than those of the IR group, showing
a downward trend (Figure 3(e)). These results indicated that
pemafibrate can inhibit the release of inflammatory factors
such as IL-1β, IL-6, and TNF-α.

3.4. Pemafibrate Inhibits Programmed Cell Death in HIRI,
including Apoptosis and Autophagy. There are extensive
programmed cell deaths in HIRI, including in ways of apo-
ptosis and autophagy. The experimental results of extracting
mRNA for qRT-PCR and observing the distribution of
molecules in the sliced liver tissue were found to be consis-
tent with that of WB (Figure 4(a)). We selected BCL-2, Bax,
Caspase 3, and Caspase 9 to detect the degree of apoptosis
in HIRI. Western blot result showed that, compared with
the level of IR group, the degree of Bcl-2 had a rising trend,
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and degrees of Bax, Caspase 3, and Caspase 9 decreased sig-
nificantly (Figures 4(b) and 4(c)). Another form of cell death
in HIRI is autophagy. With the use of common detection
molecules for autophagy including Beclin-1, LC3 and P62,
and Western blot to observe the expression trend of each
molecule under different intervention conditions, we found
that the expression of P62 at 1.0mg/kg was higher than
0.01mg/kg, and Beclin-1 and LC3 showed a downward
trend. The IHC results are the same as the previous two
(Figure 4(d)). In conclusion, pemafibrate can relieve apopto-
sis and autophagy in liver ischemia-reperfusion injury.

3.5. Pemafibrate Protects the Liver by Regulating the
JAK2/STAT3β/PPARα Signaling Pathway. We tested JAK2,
Stat3, and p-Stat3 and found that the expression level of
JAK2 in the PEM-treated group was lower than that in the
IRI group, and the levels of Stat3α and Stat3β did not change
significantly. The expression saw a different trend of p-Stat3α
and p-Stat3β, increasing considerably at level of p-Stat3α but
falling markedly at level of p-Stat3β, compared with the IRI
group. When pemafibrate acts as a PPARα agonist, Western
blot results indicate that under the action of different concen-
trations of pemafibrate, the expression of PPARα in liver
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tissues increased sequentially (Figures 5(a) and 5(b)). These
results, further verified in immunohistochemistry experi-
ments (Figure 5(c)), indicate that pemafibrate can inhibit
the JAK2/STAT3β/PPARα signaling pathway.

4. Discussion

We measured the serum levels of ALT and AST in 1.0mg/kg
PEM group, normal control group, and Sham group and
compared the changes of liver tissue structure after H&E
staining, in order to ensure that the drug dose did not dam-
age the liver. We showed that 1.0mg/kg PEM had no obvious
toxic effect on liver. After verifying that the drug has no toxic
effect on the liver, we established the hepatic IRI mouse
model. The results showed that the levels of both in the IRI
group were significantly increased, but pemafibrate could
inhibit this change. At the same time, liver necrosis induced

by HIRI was observed under light microscope, and the accu-
mulation of inflammatory cells was improved after PEM
treatment.

There are many mechanisms for the occurrence and
development of HIRI, such as ATP depletion, endothelin
(ET)/nitric oxide ratio imbalance, Ca2

+ overload, and macro-
phage activation [25]. In this process, a large amount of ROS
is released, which stimulates the cascade of immune cells.
Immune cells are composed of Kupffer cells, natural killer
cells, and dendritic cells. Activated macrophages secrete a
large number of inflammatory factors, such as IL-1β, IL-6,
and TNFα [4, 26, 27]. Based on previous studies, we detected
the levels of IL-1β, IL-6, and TNF-α in liver tissues and
observed the liver tissues under a microscope. A number of
inflammatory cells infiltrated, and inflammatory factors
significantly increased, which means it proved that the liver
tissues after IRI did have structural changes. But pemafibrate
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Figure 3: PEM pretreatment inhibits the production of IL-1β, IL-6, and TNF-α in hepatic IRI. (a) The serum IL-1β and TNF-α levels were
measured by ELISA and given asmean ± SD at 2, 8, and 24 hours after reperfusion in mice. (b) The relative mRNA levels of IL-1β, IL-6, and
TNF-α were evaluated in each group, as shown by qRT-PCR. (c, d) Protein expression of IL-1β, IL-6, and TNF-α was detected by Western
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was analyzed with the Image-Pro Plus software 6.0. Data was presented as themean ± SD (n = 6, #P < 0:05 for Sham versus IRI, ∗P < 0:05 for
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in IRI mice. PEM pretreatment dramatically reduced the levels, particularly at 1.0mg/kg.
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can alleviate inflammation and protect the liver to a certain
extent.

The release of ROS could stimulate autophagy and apo-
ptosis in the liver [9, 10]. We determined Beclin-1 and LC3
as well as P62 (autophagy markers) and Bcl-2 family as well
as Caspase family (apoptosis markers) by qRT PCR, WB,

and immunohistochemistry [13, 28]. We found that PEM
injection enabled the injured liver to produce more P62 and
Bcl-2 and reduce Beclin-1, LC3, Bax, Caspase 9, and Caspase
3. These results indicated that PEM could alleviate the pro-
grammed cell death. Autophagy is a continuous cytological
behavior. In the study of the molecular mechanism of
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Figure 4: PEM pretreatment ameliorates apoptosis and autophagy in hepatic IRI. (a) The relative mRNA levels of Bcl-2, Bax, Caspase 3,
Caspase 9, Beclin-1, LC3, and P62. (b, c) Protein expression of apoptosis- and autophagy-related proteins. (d) Immunohistochemistry was
used to detect Bcl-2, Bax, Beclin-1, and LC3 expression in liver tissues (original magnification, ×200). The IOD sum of brown area to total
area was analyzed with the Image-Pro Plus software 6.0. Data was presented as the mean ± SD (n = 6, #P < 0:05 for Sham versus IRI, ∗P <
0:05 for IRI + PEM 0.1mg/kg versus IRI, !P < 0:05 for IRI + PEM 0.1mg/kg versus IRI + PEM 0.5mg/kg, and +P < 0:05 for IRI + PEM
0.5mg/kg versus IRI + PEM 1.0mg/kg; (a, c) two-way ANOVA; (d) Student’s t-test). In the IRI group, the expression of P62 and Bcl-2
was significantly lower than that in the NC group, while the others were significantly higher. PEM could reverse this change.
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autophagy, a large number of autophagy-related proteins
have gradually been discovered and given the same name.
These ATG proteins play an important role in both the initi-
ation of autophagy and the production of autophagosomes
[29, 30]. P62 and LC3 are also key proteins for autophagy.
P62 is considered to be an autophagy-specific substrate that
can interact with LC3 to enter the autophagosome and is
degraded by the lysosome in the autophagosome. Beclin-1
combines with BCL-2 to form a Beclin-1/BCL-2 complex
[31, 32]. It can be seen that autophagy and apoptosis are
closely related. In the process of apoptosis, mitochondria
are considered to be at the center of apoptosis regulation.
Bcl-2 and Bax, as important members, participate in regulat-
ing, releasing Cyto C, and recruiting Caspase 9 [33, 34].
Caspase 9 belongs to the apoptosis-initiating subclass, but
Caspase 3 belongs to the apoptotic effect subclass [35, 36].
In other words, Caspase 9 is located at the upstream of
Caspase 3 and can regulate its protein level.

Since the expression level of STAT3α : STAT4 β is 4 : 1,
most studies ignore the role of STAT3β and regard
STAT3α as STAT3 study [33, 34]. The two subtypes were
determined to further understand the expression of the
two subtypes. In our experiment, compared with the IRI
group, the levels of JAK2 and p-STAT3α decreased, while
the p-STAT3β remarkably increased, and STAT3 had no
change. The significant difference between the two isoforms
of p-STAT3 indicated that the two have opposite effects,
and p-STAT3β has a positive effect on liver damage, which

meant that the upstream stimulator acts on JAK2 and then
stimulates p-STAT3β, not STAT3β and STAT3α. This might
be related to p-STAT3β:p-STAT3α heterodimer and p-STA-
T3α:p-STAT3α homodimer [34]. The decrease of JAK2
resulted in the decrease of p-STAT3α and the increase of
monomerized p-STAT3β. According to previous researches,
JAK2/STAT3β plays an important role in the immune
response. The activation of macrophages caused by IRI injury
produces a substantial number of inflammatory mediators,
such as IL-1β, IL-6, and TNF-α [37–39]. These inflammatory
factors can act on receptors on the surface of liver cells, acti-
vate JAK2 after entering the cells, and phosphorylate
STAT3β [40] (Figure 6). Multiple previous studies have
shown that the activation of PPARα by IL-6 is mediated by
the JAK2/STAT3 pathway [41–43].

Pemafibrate is also important in autophagy and apoptosis
[44, 45]. The mechanism of pemafibrate is still unclear, but
the inhibitory effect on autophagy is not mediated by SIRT
[46]. As a PPARα agonist, PEM might activate ATG and
TEFEB, both essential parts of the autophagy process, and
inhibit autophagy [46–49]. TEFEB is also involved in
immune response and inflammatory response [50]. When
PPARα is knocked out, the agonist is not able to reverse
the inhibition of autophagy or to induce lipid degradation
and lipid phagocytosis [51]. PPARα binds to RXR to form
a dimer to regulate of the target genes. The inhibited
expression of PPARα would lead to the weakened antia-
poptotic effect of the drug and the lost of protection of
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Figure 5: PEM modulates the phosphorylation of JAK2/STAT3β in hepatic IRI. (a, b) Protein expression of PPARα, JAK2, STAT3, and p-
STAT3. (c) The quantitative analysis of Western blot results of JAK2/STAT3β/PPARα. Data was presented as themean ± SD (n = 6, #P < 0:05
for Sham versus IRI, ∗P < 0:05 for IRI + PEM 0.1mg/kg versus IRI, !P < 0:05 for IRI + PEM 0.1mg/kg versus IRI + PEM 0.5mg/kg, and
+P < 0:05 for IRI + PEM 0.5mg/kg versus IRI + PEM 1.0mg/kg; (b) two-way ANOVA; (c) Student’s t-test). The expression of PPARα and
p-STAT3β was notably increased, but JAK2 saw a steep drop.
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mitochondria [52]. DOX-DNA complex and DOX-TOP2β
complex can inhibit the expression of PPARα, cause cell
apoptosis, and promote the release of ROS. PEM is also
closely related to inflammation [53–59]. The myocardial
IRI will lower the level of PPARα and increase the secre-
tion of ROS by myocardium [60, 61]. After the expression
of PPARα was inhibited, mice are more susceptible to oxi-
dative stress. Our experimental results also showed that
PEM can alleviate autophagy and apoptosis, and the key
molecules such as Bcl-2, Bax, Caspase 3, Caspase 9, LC3,
P62, and Beclin-1 all had corresponding changes. Besides,
the level of IL-1β, IL-6, and TNF-α rose with the increase
of PPARα. These results suggested that the effect of PEM
was dose-dependent, which indicated that the anti-inflam-
matory, antiapoptotic, and antiautophagic effects of three
doses (0.1m/kg, 0.5mg/kg, and 1.0mg/kg) increase in
turn.

In summary, our study found that HIRI stimulates liver
Kupffer cells to release amount of inflammatory factors,
which enter liver cells by binding to cell membrane receptors.
These inflammatory mediators promote the secretion of
JAK2 and the phosphorylation of STAT3α and inhibit the
phosphorylation of STAT3β. When pemafibrate intervened,
the above reaction was reversed. Increased levels of p-
STAT3β activate PPARα, thereby inhibiting cell apoptosis
and autophagy. There are some limitations in our research.
For example, the relationship between pemafibrate and
JAK2/STAT3 β still needs further study. Whether pemafi-
brate is safe in clinical treatment is unknown. Its therapeutic
effect needs to be compared with the commonly used drugs
in clinic.

5. Conclusions

Our study found that pemafibrate can effectively inhibit IR
damage to the liver of Balb/c mice. In our experiments,
pemafibrate significantly reduces serum ALT and AST levels
and relieves liver pathophysiological changes. In addition,
pemafibrate inhibits the release of inflammatory factors,
including IL-1β, IL-6, and TNF-α, as well as cell deaths such
as apoptosis and autophagy by regulating JAK2/STAT3β/P-
PARα. In conclusion, our research suggests that pemafibrate
could be a potential therapeutic agent for HIRI.
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