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The monitoring of cultivated crops and the types of different land covers is a relevant environmental and economic issue for
agricultural lands management and crop yield prediction. In this context, this paper aims to use and evaluate the contribution of
multisensors classification based on machine learning classifiers to crop-type identification in a semiarid area of Morocco. It is a
very heterogeneous zone characterized by mixed crops (tree crops with annual crops, same crop with different phenological states
during the same agricultural season, crop rotation, etc.). Therefore, such heterogeneity made the crop-type discrimination more
complicated. To overcome these challenges, the present work is the first study in this area which used the fusion of high
spatiotemporal resolution Sentinel-1 and Sentinel-2 satellite images for land use and land cover mapping. Three machine learning
classifier algorithms, artificial neural network (ANN), support vector machine (SVM), and maximum likelihood (ML), were
applied to identify and map crop types in irrigated perimeter. In situ observations of the year 2018, for the R3 perimeter of Haouz
plain in central Morocco, were used with satellite data of the same year to perform this work. The results showed that combined
images acquired in C-band and the optical range improved clearly the crop-type classification performance (overall accu-

racy = 89%; Kappa =0.85) compared to the classification results of optical or SAR data alone.

1. Introduction

Accurate and detailed knowledge of land cover/land use
(LC/LU) is a crucial issue for research work and many
operational applications in agriculture such as a crop water
requirement, crop yield prediction, etc. The availability of
remote sensing imagery, that offered the access to a set of
large regions, is a major asset to elaborate LC/LU maps.
Remote sensors operate on a variety of basic physical
principles, recording the electromagnetic properties of an
Earth’s surface (i.e., the energy reflected (optical sensors),
emitted (passive infrared or microwave thermal sensors), or
diffused (active radar sensors)) and, therefore, provide a
variety of information on the properties of land cover [1].
The use of optical remote sensing for LC/LU mapping is well
established and can be considered effective, yet it exhibits

some shortcomings when applied to large scale regions with
complex land cover, or where cloud cover is frequent [2-5].
On the other hand, using SAR data for crop-type dis-
crimination is still facing many challenges, particularly that
its recognition accuracy is not high enough [6, 7]. But it has
been shown that it can provide improvements in classifi-
cation quality when combined with optical data [8-10]. In
order to achieve these improvements and better identify land
cover types, combining datasets acquired from remote
sensors that rely on different physical fundamentals, and
thus providing synergistic information on surface proper-
ties, leads to a promising approach [11-13], particularly with
the recent free of charge image datasets (optical and radar
images from the Sentinel satellite sensors) [14], which
provide the possibility of data fusion of higher spectral
resolution, compensating the limits of the use of unique data
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products alone. Nowadays, studies support the hypothesis
that the complementarity of these two types of data is able to
provide improved information on LC/LU applications. For
example, assume that the optical energy reflected by vege-
tation depends on the structure of the leaf, pigmentation,
and humidity, while the microwave energy dispersed by
vegetation depends on the size, the density, the orientation,
and the dielectric properties of elements comparable to the
wavelength size of the radar [15]. On the basis of this hy-
pothesis, the objective of this study was to evaluate the
usefulness of using SAR data on the one hand and of the
combination of both types of remote sensing data, on the
other hand, to map and identify crop types.

The work begins with the description of test site and the
satellite data acquired and detailed the methodology to be
followed. 20 Sentinel-2 (S2) optical images and 12 Sentinel-1
(S1) SAR images have been downloaded. In addition, in situ
dataset was acquired from a field and supplemented with
data from Google Earth platform. The methodology consists
of the application of the ML, SVM, and ANN machine
learning algorithms for the classification of Sentinel-2
products, Sentinel-1 products and the combined products of
the two sensors. The quantitative evaluation of the results
was carried out by the overall accuracy (OA) and the Kappa
coefficient (K) obtained by construction of the confusion
matrix of each classified image, while the qualities of the
images were compared visually.

Moreover, these results were followed by comparison
between the performance of classification using optical
imagery, SAR imagery, and the combination of both of
datasets and discussion in order to evaluate the performance
of using radar data for the production of LC/LU maps of
reliable soil, and prove the possibility of improving classi-
fication accuracy by synergistic use and the fusion of data
acquired from multisensors. Finally, the paper ended with
the main conclusions and perspectives extracted from this
study.

2. Materials and Methods

2.1. Test Site. The plain of Haouz is a vast plain of 6000 km?
of surface which stretches over a length of approximately
150km from east to west in the region of Marrakech-Safi
located in central Morocco and including part of the Haut-
Atlas. It is a predominantly rural area where the agricultural
sector plays an important role in the formation of the
economic fabric and of which approximately 3100km?
represents an irrigated area. The semiarid continental cli-
mate of the Haouz plain is characterized by an average
annual rainfall of 250 mm and high temperature in summer
(37.7°C on average maximum) and low in winter (4.9°C as
the average of the minimum) [16]. The main agricultural
production in the region remains cereal with nearly 5.6
million quintals in 2011-2012, or an average yield of 6.2
quintals per hectare [17].

In this work, we are interested in the left part of the
irrigated sectors, in the Haouz plain, called R3 perimeter and
located in the Sidi Rahal region about 40 km east of the city
of Marrakech (Figure 1). It is a sector irrigated by a gravity. It

Scientifica

is divided into plots (several plots form blocks) of different
size. The majority of plots are used for the production of
cereal (46% of the areas surveyed in 2012), followed by tree
crops (mainly olive and orange) and market gardening. A
significant part, a quarter to a year depending on the year, is
left fallow or not cultivated. The cereal is sown between
November and January, reaches its maximum development
in late March, and is harvested in early summer. The
characteristics of this site (absent relief, regular, and large
plot) make it a privileged study area for evaluating the
contribution of satellite data in the extraction of information
on changes in classes. For this, the R3 site has been in-
tensively investigated in recent years (and still is) [5, 16, 18].

The different crops of the perimeter R3 were digitalized
and subdivided into plots using ArcGIS software. These plots
were created in such way to delineate each crop separately in
order to identify the spectral responses and radar signal
responses within the same plot. A total of 506 plots were
recorded, with areas varying from 0.05 up to 5 hectares. We
used very high spatial resolution images, updated for the
year 2018 and provided by Google Earth Archives. Figure 2
shows the division of the area into 506 plots.

2.2. In Situ Data. Field data is used to extract profiles,
calibrate or train classification algorithms, and validate the
results (accuracy assessment of classified image). Samples
were extracted during a field campaign carried out on April
2018 and were supplemented by samples extracted using the
archives of high spatial resolution images (Spot) on Google
Earth platform. The investigated plots are accompanied by
detailed description providing information on the type of
land cover and are divided into two groups, namely, cali-
bration samples and validation samples. Figure 3 illustrates
the spatial distribution of the surveyed plots (calibration and
validation). The land cover types were grouped into six main
classes which were chosen in terms of abundance in the
study area. This typology contains orange trees, olive trees,
cereal, double cropping (cereal in winter + summer crops),
fallow, and bare soil.

2.3. Remotely Sensed Data. The optical and SAR imagery
were used in this work acquired from the two sensors
Sentinel-2 and Sentinel-1, respectively. The choice of these
two sensors is mainly due to the availability and cost of these
products, as well as the high spatial, spectral, and temporal
resolutions they offer.

2.3.1. Sentinel-2 Images. ESA (https://sentinel.esa.int/web/
sentinel/home) produces and distributes ortho-rectified
Sentinel-2 data expressed in reflectance at the top of the
atmosphere, the 1C level. Theia [19] produces and distrib-
utes level 2A data, corrected for atmospheric effects using
the MAJA software developed thanks to the coordination
between CNES and CESBIO [20-22]. This processing chain
uses multitemporal information to detect clouds and their
shadows, estimate the optical thickness of aerosols and the
amount of water vapour, and correct for atmospheric effects.
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FiGure 1: Test site location.

FIGURE 2: Division of R3 perimeter into 506 plots.

The data are freely downloadable from Theia official website,
http://www.theia-land.fr/. The MAJA chain is an atmo-
spheric correction and cloud detection system. It can ac-
commodate time series of high-resolution images taken at
constant or nearly constant viewing angles. It can process
data from Landsat and Sentinel-2 satellites.

(1) Data Processing. S2 images were processed to derive
products based on a vegetation index known as NDVI
(Difference Normalized Vegetation Index). This index,
presented by Tucker in 1979 [23], is now the most widely
used vegetation index in remote sensing and indicates the
importance and the dominance of vegetation on remotely

B Calibration
I Validation

FIGURE 3: Spatial distribution of reference data over R3 perimeter.

sensed image. The transformation of the images into NDVI
was carried out for the whole 20 images, in order to extract
the phenological evolution of the classes, since it can be
modelled by the NDVI profiles. NDVTI is calculated from the
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normalized difference of the near infrared (NIR) and red (R)
bands of S2 images according to the following formula:

NIR - R
NDVI = NIRTR (1)

(2) Acquired Scenes. S2 images have been used for the
present study. All available atmospheric corrected and
cloudless S2 images, from January 1 to December 31 of 2018,
have been downloaded from Theia Land Service website.
These images resulted in 20 images covering the whole year
of 2018 and well distributed over the 4 seasons (around 2
images per month), used to monitor the phenological
evolution of the different classes chosen for the R3 test site.

2.3.2. Sentinel-1 Images. Microwave signals are emitted by
an antenna towards a particular region of the Earth surface
for synthetic aperture radar (SAR) imaging. The microwave
energy reflected back to the spacecraft is measured. SAR
images are created using the radar concept, which takes
advantage of the time delay of backscattered signals to create
an image. The intensity of each pixel in a SAR image reflects
the proportion of microwave backscattered from that
ground region. The backscattering coeflicient is a physical
quantity that ranges from +5dB for very light objects to
—40dB for very dark surfaces, with values ranging from
+5dB for very bright objects to —40dB for very dark
surfaces.

Sentinel-1 is a synthetic aperture radar (SAR) mission
that provides continuous all-weather, day-and-night images
at C-band in four imaging modes (EW, IW, SM, WV) with
various spatial resolutions (10, 20, 60 m) and coverages. This
mission is based on a constellation of two identical satellites,
Sentinel-1A and Sentinel-1B, launched separately.

2.3.3. Data Processing

(1) Speckle Noise Removal Filtering. Unlike optical imagery,
SAR data is formed by coherent interaction of the trans-
mitted microwave with the targets. Hence, it is affected by
the speckle noise which arises from coherent summation of
the signals scattered from ground scatterers distributed
randomly within the pixels. A SAR image appears visually
more noisy than an optical one. Therefore, a speckle noise
removal filter is necessary before display and further
analysis.

To reduce the speckle noise in the acquired S1 images,
Enhanced Lee Filter [24] was applied. In the literature, there
is a large family of filters [25-27]; therefore, Enhanced Lee
Filter is one of the efficient filters used for SAR imagery in
particular for areas with high degree of heterogeneity [28].
This filter is widely used for remote sensing applications
[29, 30]. Enhanced Lee Filter, implemented in ENVI soft-
ware used for crop classification, was applied in the different
windows given by the software and the best speckle noise
filtering was achieved in window of 5 x5 [31, 32].

To interpret and analyze the SAR imagery, another
processing was applied to get the backscattering coefficient
values. Therefore, the filtered images were transformed into
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decibels (dB). This transformation was done through the
following formula:

X =10 log,, x, (2)

where x is the value of each pixel.

(2) Texture Features. Texture is a native spatial attribute of an
image. Due to the sensitivity of the SAR backscatter to the
homogeneity, orientation, spatial relationship, and type of
ground objects, this kind of imagery represents certain
texture features [33]. Therefore, the texture analysis is highly
important while using SAR data.

Texture analysis is based mainly on the computation of
textures features from an image. These features are deter-
mined from the statistical distribution properties of the
image spectral tone for a certain neighborhood [34, 35].
Texture analysis statistics are classified into first-order,
second-order, and higher-order statistics. The Gray Level
Co-occurrence Matrix (GLCM) is one of the methods to
calculate the second-order statistical texture features.

Texture analysis from GLCM offers crucial and reliable
information on the spatial relationship of the pixels of an
image [36]. In general, GLCM estimates the probability that
pixel values (in moving windows) occur in a given direction
and at a certain distance in the image [37]. There are many
texture features computed by GLCM [38], three of which
were calculated in this study, namely, the mean, variance,
and correlation (Table 1).

The three S2 derived GLCM features were computed
with a moving window size of 5 x 5, in all directions, based
on the method [38]. These GLCM statistics were applied for
both VV parallel polarization and VH cross polarization
using the Sentinel toolbox of the software called SNAP
(SeNtinel Application Platform).

P; ; is a normalized gray tone spatial dependence matrix
such thatzl{\;;z)ipi,j =1; i and j, respectively, represent the
rows and the columns for the mean, variance, and corre-
lation measures; y is the mean for the variance texture
measure; and N is the number of distinct gray levels in the
quantified image; (y,,4,), and (o,, 0,) are the means and
standard deviations ofV P.and P, respectively, for the
correlation texture measure [39].

(3) Acquired Scenes. An automatic processing chain
generates single-date products and “ready-to-use” time se-
ries for a very large number of applications. Sentinel-1 data
are ortho-rectified on the Sentinel-2 grid to facilitate the
joint use of both missions. This product, named “S1Tiling,”
has been developed within the CNES radar service, in
collaboration with CESBIO, to generate calibrated, ortho-
rectified and soon to be filtered Sentinel-1 time series images
over any terrestrial region of the Earth. It is based on the
ortho-rectification application of radar images from the
Orfeo Tool Box. The images obtained are superimposable on
the Sentinel-2 optical images, as they use the same geo-
graphical reference frame. We can therefore have access to
Sentinel-1 data acquired on Sentinel-2 tiles.

One SAR image per month was downloaded in accor-
dance with the important dates in terms of vegetative cycles
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TaBLE 1: Mathematical formulas for calculating texture features
using GLCM statistics: the mean, variance, and correlation.

Texture Formula
Mean Zf\]:ﬂ P, .

. NTY 2
Variance DijooiPij (i — )
Correlation (Zf:’j;})iPi,j = Yui))loyo,

of the crops over the study area. 12 SAR images were ac-
quired for this study. These images have been chosen in such
way that they are acquired no more than 2 days before or
after the date of acquisition of the optical image of the same
period. Figure 4 shows the temporal distribution of the
acquisition dates of the downloaded S2 and S1 images.

3. Methodology

The methodological approach used in this work consists of 4
main steps:

(1) Data acquisition
(2) Data preparation and preprocessing

(3) Extraction and analysis of profiles (NDVI, VV, VH,
VV/VH) and classification

(4) Evaluation of obtained results by the confusion
matrix (OA and K)

Figure 5 illustrates the sequence of the different steps just
mentioned. Since we have already presented the first two
steps in the previous sections, we will subsequently detail the
3rd and 4th steps.

3.1. Temporal Optical NDVI and SAR Backscatter Profiles
Extraction. For each of the chosen classes, the NDVI, V'V,
VH, and VV/VH profiles were created, in order to study the
possible confusions or separability to be expected between
these different classes, and to be able to analyze and interpret
the classification results. The temporal evolution of NDVI
profiles allows the modelling of the dynamics of land cover
types, and particularly the phenological evolution of the crop-
type classes, which makes them relatively interpretable. On
the other hand, the radar profiles are more complex for the
vegetative classes, reflecting the evolution of the proportion of
the backscattered signal, mainly influenced by the surface
roughness of the canopy as well as its water content. Figures 6
and 7 show, respectively, for each of the chosen classes, the
temporal evolution of NDVI, and that of the backscattered
signals in the C-band (in VV, VH, VV/VH polarizations).

3.2. Machine Learning-Based Classification. The classifica-
tion was performed using three supervised machine learning
algorithms implemented in ENVI, namely, maximum
likelihood (ML), support vector machine (SVM), and neural
network (ANN).

ML Classifier. It is a supervised classification technique
that relies on the statistics of class signatures extracted
directly from the satellite imagery or of training

Acquisition dates
0 —00—0—000— 000 — 0000 00— 00000

r——0— 00— 00— 00— 00— 00— 00— 00— 06— 0
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—e— Sentinel-1
—eo— Sentinel-2

FIGUure 4: Distribution of acquisition dates of SAR and optical
images.

samples representing different land cover types chosen
on the basis of the ground truth data collected during
field campaigns [5, 40]. ML is a pixel-based algorithm
that based on a multivariate probability density func-
tion of classes [41]. The likelihood of a pixel to be
belonging to each of the considered classes is calcu-
lated. Then, this pixel is affected to a class having the
highest probability of pixel belonging. MLC is a one of
the most commonly used supervised classification
methods in remote sensing to derive land use/cover
maps [3, 42-44].

SVM Classifier. The support vector machine (SVM) is
one of the most useful machine learning algorithms. It
is based on statistical learning theory and has been
extensively exploited in remote sensing for LC/LU
mapping and crop classification [44]. The main ad-
vantage of SVM method is the ability to classify high
dimensional data with small set of training samples
[45]. SVM works with pixels in the boundary of
considered classes which are named support vectors
[46, 47]. For the complex data that cannot be separated
using linear hyper-planes, optimal hyperplane sepa-
rating the different classes by nonlinear mapping
functions, called kernel functions, can be defined.
Several kernel functions can be used with SVM clas-
sifier. However only four of them which are linear,
polynomial, radial basis function (RBF), and sigmoid
kernels have been commonly used to classify satellite
data [48]. RBF kernel was used for the present study.

ANN Classifier. ANN classifier was originally created,
as a mathematical model, for data analysis and pattern
recognition in order to mimic the analytical operations
and neural storage of the human brain. It is such
parallel system of calculation which consists of large
number of basic processors with interconnections [49].
ANN is extensively adopted machine learning tech-
nique for LC/LU mapping [44, 50, 51]. It has the ability
to learn from training ground samples and store the
pattern of the each input variable (land cover classes in
the present study). After the training step, new data
(pixels of satellite image) is introduced to ANN clas-
sifier; it recognizes the pattern from this data and
classify it.

In the present study, we have restricted ourselves to the
use of supervised methods since these techniques generally
provide better results in the production of LC/LU maps.



NDVI

NDVI

NDVI

Scientifica
Multitemporal sentinel-2 Multipolarisation In situ dataset
images Sentinel-1 images
Speckle noise removal Calibration data
filter
NDVI time series
extraction Transformation to dB -l\ Validation data
e s T !
Extraction and analysis of Classification of S2 Classification of S1 SAR Classification of S2 and
profiles optical layers layers S1 layers
| | |
¥
Performance assessment
Comparison, analysis, and
discussion
FIGUure 5: Methodological approach applied in the study.
1 1
0.75 075 4yt
° L ]
— . ‘e
>
0.5 4 A 0.5 o,
Z p, ‘ ;
L - e
0.25 - 0.25 4 : Ve o
o o° o
0 T T T T u u T 0 T T T T T T T
Jan-18 Mar-18 Apr-18 Jun-18 Jul-18 Sep-18 Nov-18 Dec-18 Jan-18 Mar-18 Apr-18 Jun-18 Jul-18 Sep-18 Nov-18 Dec-18
() (b)
1 1
0.75 4 0.75 A
0.5 | 2 051
Z
0.25 4 0.25
0 t t t t t t t 0 1 t t t T ' '
Jan-18 Mar-18 Apr-18 Jun-18 Jul-18 Sep-18 Nov-18 Dec-18 Jan-18 Mar-18 Apr-18 Jun-18 Jul-18 Sep-18 Nov-18 Dec-18
(c) (d)
1 1
0.75 4 0.75 A
0.5 E 0.5 4
Z.
0.25 4 0.25
0 T T T T T T T 0 T T T T T T T
Jan-18 Mar-18 Apr-18 Jun-18 Jul-18 Sep-18 Nov-18 Dec-18 Jan-18 Mar-18 Apr-18 Jun-18 Jul-18 Sep-18 Nov-18 Dec-18

(e)

()

F1GURre 6: NDVI profiles of the different classes chosen in zone R3 for the year 2018. (a) Oranges. (b) Cereal. (c) Double cropping. (d) Olive.
(e) Bare soil. (d) Fallow.



Scientifica

o (dB)

o (dB)

o (dB)

Jan. Mar May Jul Sep Nov
10
5 '\'—H——O—‘O\.—M
0
-5
-10 .\././"’\o—o——PC\‘/‘\.
15 ,,4—0/._.\"'—'\'\(.\0
-20
-25
Date
-e— VV
-e— VH
—-e— VV/VH
()
Jan. Mar May Jul Sep Nov
10
: W
0
-5
10 W
-15 ./‘\,/'/\\'/./‘1'\'
-20
-25
Date
—-eo— VV
-eo- VH
—e— VV/VH
(c)
Jan Mar May Jul Sep Nov
10 '/’\0/‘\.\.\././0\.»\.
5
0
-5
-10 M
-15
20 -\./‘\o—o\'/.\,\._./'\.
-25
Date
- VV
-eo- VH
—eo— VV/VH

(e)

7
Jan. Mar May Jul Sep Nov
10
5 '_.\'ﬂ\./o—o—o/"*.’o
0

g -

© -10 "\/./‘\v\'\'/‘\f\
-15 ./'\'/./\‘\’\'/\f\'
-20
-25

Date

- VV

-~ VH

-e— VV/VH

(b)

Jan Mar May Jul Sep Nov
10

5 W
0

g -

S 10 P—eo o o0 o o 0o
15 .\._././.\O—H/.\./.\'
-20
-25

Date
-eo- VV
-~ VH
—e— VV/VH
(d)
Jan Mar May Jul Sep Nov
10
. W
0
g s
©

-10 M
1 N
-20

-25

Date

-eo— VV
—eo— VH
—eo— VV/VH

®

FIGure 7: VV, VH, VV/VH, and VV-VH profiles for the different classes chosen in zone R3 for the year 2018. (a) Oranges. (b) Cereal.
(c) Double cropping. (d) Olive. (e) Bare soil. (d) Fallow.

First, we started by classifying the time series of NDVI, V'V,
VH, and VV/VH. We then combined the data from the two
sensors to explore different possible scenarios. Table 2 de-
scribes these scenarios in the order followed in the classi-

fication step.

3.3. Accuracy Assessment. The evaluation of the classifica-
tion results can be done qualitatively by comparing the
images or quantitatively by measuring the accuracy of the
LC/LU classification using statistical tools such as the
confusion matrix and the Kappa index [52, 53]. Confusion
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TaBLE 2: Different scenarios (noncombined and combined) from multisensor bands to classify.

Scenario Layers Layers used for classification Sensor
1 NDVI S2

2 \'AY S1

3 VH S1

4 VV/VH S1

5 Texture S1

6 Noncombined (single sensor) VV; VH S1

7 VV; VH; texture S1

8 VV; VV/VH S1

9 VH; VV/VH S1

10 VV; VH; VV/VH S1

11 VV; VH; VV/VH; texture S1

12 NDVI; VV S1 and S2
13 NDVI; VH S1 and S2
14 Combined NDVI; VH; texture S1 and S2
15 NDVI; VV/VH S1 and S2
16 NDVI; VV; VH S1 and S2
17 NDVIL; VV; VV/VH S1 and S2
18 (multisensor fusion) NDVI; VH; VV/VH S1 and S2
19 NDVI; VH; VV/VH; texture S1 and S2
20 NDVI; VV; VH; VV/VH S1 and S2

matrices were calculated to reveal not only the general errors
made at the level of each class when interpreting the results,
but also errors due to confusion between LC/LU classes [54,
55].

The overall accuracy (OA) of the classification, used as
one of evaluation metrics, is given by the average of the
percentages of correctly classified pixels in the following
equation:

k
OA = Z:i (3)
N
where X;; is the number of diagonal pixels (correctly clas-
sified) and N is the total number of pixels.

The second assessment metric is the Kappa coeflicient
(K), which is calculated by the formula of the following
equation:

AO — Ac
= (4)

where A, is the obtained OA or actual percentage of clas-
sified land is covers and A, is the probability of obtaining a
correct classification.

K =

3.4. Postclassification. After the classification process, the
classified images including SAR bands showed a law
sharpness. A majority filter therefore was applied to get
smoothed images. It is a logical filter applied to a classified
image. In this process, the number of pixels assigned to each
of the classes is calculated and if the center’s pixel is not a
member of the majority class (including 3, 5 or more pixels
according to the considered window), it is given the label to
the majority class. Such filters are used in order to smooth
the classified images by the number of pixels allocated to
each of the classes counted and, if the center pixel is not a
member of the majority class (containing five or more pixels
within the window), it is given the label of the majority class.

The effect of this algorithm is to smooth the classified image
by weeding out isolated pixels, which were initially given
labels that were dissimilar to the labels assigned to the
surrounding pixels [56].

4. Results and Discussion
4.1. Temporal Analysis of the Profiles

4.1.1. NDVI Profiles. The NDVI vegetation index provides
information on the importance or the dominance of the
vegetation cover; it allows the modelling of the phenological
stages of the different crops. For annual crops, for example,
the start of the season begins when the rate of increase in
NDVT values is greater than the previous successive ob-
servations during the period of vegetation growth. The end
of the season is defined as the time during the maturation
period when there is a significant decrease in NDVI.
Generally, it corresponds to the period during which
chlorophyll activity gradually decreases [27]. These evolu-
tions can be seen in Figure 6 graphs B, C, and F for cereal,
double cropping, and fallow. The NDVI spectral profiles of
these crops reflect their seasonality. The amplitude of the
graphs becomes important during periods of vegetation
development.

Wheat and barley (grouped in the cereal class because
of their high phenological similarity) are grown in early
December, reach their maximum development at the end
of March, and are harvested in mid-May and no later than
early June (graph B). The same description remains valid
for the fallow class (graph F), because this natural veg-
etation benefits from the presence of winter rains and
grows over the same period of March. For the time profile
of the double cropping class (graph C), it is the union of
the profiles of two crops: cereal and vegetable crops or
corn.
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Orange and olive belong to perennial crops group, yet we
have separated them. The NDVI value of these classes is
generally over 0.3 throughout the year (Figure 6, graphs A
and D). Decreases in NDVT values of tree crops in summer
are due to water stress resulting from water scarcity and
increased temperatures over this period and in addition
sometimes due to leaf loss. The bare soil class is relatively
easy to detect due to the absence of vegetation resulting in
NDVI values that not exceeding 0.20 (Figure 6, graphs E).

4.1.2. VV, VH, and VV/VH Profiles. The profiles in Figure 7
illustrate the temporal evolution in intensity (SAR back-
scattering coeflicient expressed in decibels of the VV, VH,
and VV/VH polarizations), of the 6 selected covers, orange,
olive, cereal, double cropping, fallow, and bare soil. Unlike
NDVI profiles, radar profiles are more complicated to
interpret.

The first thing noticed is that, for all the studied classes,
the values of intensity in parallel polarization VV (values
between —7dB and —12dB) are above those in cross-po-
larization VH (values between —12 dB and —20 dB), while the
intensity values of the VV/VH ratio are positive (varying
between 4dB and 10dB). In particular, for the double
cropping class, the VH and VV/VH signals show the most
marked seasonality over the entire period with amplitudes of
the order of 3 dB and 5 dB, respectively, linked more in VH
polarization to the periods of leaf activity in phase with
NDVTI. This may be at the origin of the distinction of the dual
culture class from the others.

For the tree crops, oranges class showed “Presque” a
stable value of VV/VH signal with slight variations, mainly
in May, August, and November. Similar variation of am-
plitudes in the same period was recorded also for VV and
VH signals (varying between min of —11 and a max of -8 dB
for VV signal, and between min of —16 and max of —14 for
VH signal). Compared to olive NDVI profile, the period of
variation of SAR backscatter signals is the same months
when the NDVI values decrease. This shift can be explained
by the increase of temperature which is related directly to
soil moisture. The second crop tree, oranges class, presented
significant decrease, of VV/VH ratio values, during the
period between February and May (varying between min of
4dB and max of 9dB), while VV and VH signals showed
negligible shifts.

For cereal (barley and wheat), barley and wheat are
more redundant annual crops in the study area. Both of
these crops have similar phenology and plant structure;
we therefore considered them as same crop class, namely,
cereal. For this class, the VV and VH signals represented
same variations as double cropping especially during
spring and summer (from January to July). Those shifts
can reflect the high leaf activity of cereal during this
period compared with NDVI values. During the rest of the
year, some variations were observed in particular No-
vember and December due to precipitations. For cereal’s
VV/VH signal, no significant shifts were recorded. Fi-
nally, unlike the Fallow’s and bare soil’s NDVI profiles,
the backscatter signals’ values are distinguished. Table 3

summarizes the ranges and amplitudes of signals for all
classes over all months of the year.

4.2. LC/LU Classification Results. This section is about the
performance assessment of the classification algorithms,
applied to the crop-type discrimination in R3 perimeter,
from the time series of both Sentinel-1 and Sentinel-2 data.
Quantitative results, using the performance metrics (OA, K),
were presented and followed by qualitative results (visually
analyzing the overall quality of classified images).

4.2.1. Quantitative Results. First of all, the results corre-
sponding to the initial scenarios of noncombined Sentinel
products are presented and followed by the classified images
for these scenarios. Then, we studied the classification results
of the combined products of S1 and S2 data. Finally, we
analyzed these results by highlighting the scenarios leading
to better OA and K indices. The results of the first group
(noncombined products) are grouped together in Table 4.

The results of the product classifications from each of the
two S1 and S2 sensors confirm the superiority of the optical
data and the SVM algorithm in terms of LC/LU classification
and the performance, respectively, especially that we had
problems of overestimation with the ML and ANN algo-
rithms, even if the latter is one of the most powerful machine
learning classifiers. The resulting OA of the NDVI time
series classification is 85.83% (K =0.81), while the best OA
values were obtained by classifying the time series of 2
scenarios (VV and VH) and (VV, VH, and VV/VH). These
OA are equal to 75.43% (K=0.67) and 75.42% (K=0.67),
respectively. We noticed that the addition of the VV/VH
band provided no improvement to VV and VH, while the
inclusion of textural characteristics improved the classifi-
cation up to 76.72% (K =0.68).

Taking into consideration that SAR sensors are not
primarily intended for LC/LU mapping, the classification of
radar products presents acceptable results despite being
inferior to those obtained by NDVI (optical data). The
Kappa index being between 0.61 and 0.80 indicates “strong
agreement” according to Landis and Koch, 1977 [28]. The
results of the second group (combined optical and SAR
products) are presented in Table 5.

The classification results of the SI and S2 combined
products show a slight increase (to a maximum of ap-
proximately 2%) in the specifications of scenarios 12 (NDVTI;
VV), 13 (NDVI; VH), and 14 (NDVI; VH; texture). On the
other hand, there is a slight decrease for the rest with the
same rate. As for the first group, some scenarios were
overestimated by the ML and ANN machine learning
algorithms.

4.2.2. Qualitative Results. In order to visually compare the
quality of the classified images, we then presented in Figure 8
the images obtained from the scenarios that resulted with
higher accuracy. We noticed some differences between the
classifications of S1 and S2 products. In fact, first of all we
observed inconsistencies in classifications with the olive tree
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TABLE 3: Minimum values, maximum values, and amplitudes of the VV, VH, and VV/VH signals for the different classes.

a Signal VV Signal VH Signal VV/VH
asses
Min Max Amplitude Min Max Amplitude Min Max Amplitude
Orange -11.5 -8.7 2.8 -16.9 —-14.4 2.5 4.9 6.7 1.8
Olive -9.5 -7.5 2.1 -15.5 -12.5 3.0 4.5 9.7 53
Cereal -13.0 -7.8 5.2 -19.2 -13.5 5.7 4.9 7.1 2.2
Double cropping -12.5 -7.1 5.4 -18.6 -13.3 5.3 4.6 9.7 5.1
Fallow -12.7 -7.6 5.2 -20.4 —14.5 59 4.9 9.2 4.3
Bare soil -12.0 -7.2 4.8 -19.6 -16.4 3.5 7.1 10.7 3.6
TaBLE 4: Overall accuracies and Kappa coefficients of noncombined scenarios.
SVM ML ANN
OA K OA K OA K
NDVI 85.83 0.81 84.38 0.79 81.54 0,76
\AY% 64.81 0.52 62.56 0.50 60.45 0,48
VH 71.35 0.61 56.96 0.44 66.90 0,55
VV/VH 51.28 0.33 45.98 0.29 44.86 0,27
Texture 58.22 0.44 50.92 0.38 54.85 0,40
VV; VH 75.43 0.67 71.15 0.60 65.62 0,56
VV; VH; texture 76.72 0.69 72.83 0.63 54.89 0,41
VV; VV/VH 72.97 0.59 66.96 0.55 58.38 0,38
VH; VV/VH 72.10 0.62 66.95 0.55 Overestimation
VV; VH; VV/VH 75.42 0.67 Overestimation Overestimation
VV; VH; VV/VH; texture 76.45 0.68 Opverestimation 55.69 0.42
TaBLE 5: Overall accuracy and Kappa indices of combined scenarios.
SVM ML ANN
OA K OA K OA K
NDVI; VV 82.93 0.77 81.24 0.74 59.98 0.45
NDVI; VH 86.10 0.81 84.46 0.78 72.18 0.62
NDVI; VH; texture 87.22 0.82 85.68 0.80 51.89 0.38
NDVI; VV/VH 82.33 0.80 81.00 0.74 58.11 0.43
NDVL; VV; VH 83.78 0.78 82.83 0.76 Overestimation
NDVI; VV; VV/VH 83.37 0.77 83.39 0.76 Overestimation
NDVI; VH; VV/VH 84.60 0.79 82.39 0.75 Overestimation
NDVI; VH; VV/VH; texture 85.52 0.80 84.36 0.78 55.09 0.42
NDVI; VV; VH; VV/VH 83.83 0.78 Overestimation Overestimation
NDVI; VV; VH; VV/VH; texture 85.20 0.80 Overestimation 55.59 0.42
Sentinel-2
NDVI
N
A

0 0,3750,75 1.5
— — 11

[ Orange I Bare soil
[ Cereal [ Double cropping
I Fallow I Olive

(a)

Figure 8: Continued.
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FIGURE 8: Classified images resulting from the best classification accuracies.
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FIGURE 9: Improved quality of one of the classified images from radar products after smoothing.

and fallow classes. Moreover, the quality of classified SAR
images is lower than those classified with NDVI images in
terms of sharpness even though the effect of speckle was
reduced after applying the noise removal filter. The com-
bined products resulted in very sharp images, which is due to
the complementary contribution of optical data. The pres-
ence of isolated pixels on homogeneous plots over the entire
area contributed to the “noisy” appearance of classified SAR
products. Therefore, we have tried to improve the quality of
these images and the accuracy of the results by applying
post-processing which consists of smoothing classifications
containing SAR products.

4.2.3. Postclassification: Smoothing. When the classifica-
tion of scenarios containing SAR products is carried out,
we notice in the images a lack of sharpness in the
definition of the classified plots; the images seem
“noisy.” We then apply a smoothing on these images,
through the command of ENVI called “Majority/Mi-
nority Analysis.” This command filtered the image by
replacing the value of the central pixel of a window of
size n x n (where we must define n) by the majority value
located in this window. In order to avoid an “over-
smoothing,” we have chosen a window of size 3 x3. We
present in Figure 9 an example of a classified SAR image
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TaBLE 6: Improved overall precision and Kappa indices by applying smoothing.
Before smoothing After smoothing
OA K OA K
VV; VH 75.43 0.67 77.36 0.67
VV; VH; texture 76.72 0.69 80.91 0.74
VV; VH; VV/VH 75.42 0.67 81.12 0.75
VV; VH; VV/VH; texture 76.45 0.68 81.01 0.75
NDVI; VH 86.10 0.81 88.26 0.84
NDVI; VH; texture 87.22 0.82 88.90 0.85
NDVIL; VV; VH 83.78 0.78 86.35 0.81

Improvement of classification accuracies after

90

85

80

75

70

Overall accuracy (%)

65

smoothing

VV; VH VV; VH; VV; VH; VV; VH;
texture VV/VH VV/VH; VH VH;

—8— Before smoothing
—@— After smoothing

NDVL, NDVI; NDVIL

VV; VH

texture texture

Scenario

®  Purely SAR classified images

FIGURE 10: Increased precision of classified images containing radar products that gave the best precision.

before and after smoothing. Visually, the quality has
improved, and this product, which is derived from S1
data only, looks more like the classified image from the
NDVI time series.

This process was applied to the scenarios containing SAR
products and which gave the best results. Table 6 displays the
overall accuracies and the Kappa indices of these scenarios
before and after applying the smoothing.

In order to better visualize these improvements, Fig-
ure 10 shows the evolution and the increase in the values of
the OAs after smoothing.

Figure 11 illustrates smoothed images derived from
purely SAR products of the scenarios in Table 6.

Figure 12 illustrates the best three thematic products
series, namely, (1) crop-type map from NDVT time series, (2)
crop-type map from SAR time series (VV, VH, VV/VH, and
texture) smoothed, and (3) crop-type map from combined
optical and SAR data (NDVI, VH, and texture).

5. Discussion

In general, NDVI profiles model the phenological behavior
of classes, and compared to VV, VH, and VV/VH profiles,
they showed great class separability which facilitates their

discrimination when applying classification algorithms. By
quantifying the results using confusion matrices, the sepa-
rability was translated by the deviation found on the overall
accuracies and the Kappa indices, with around 85%
(K=0.81) and around 77% (K=0.69) of OA on the classi-
fications of NDVI (optical data) and a combined product of
VYV, VH, and texture (best case scenario of the purely SAR
data). Product integration of the two sensors S1 and S2
slightly increased accuracy compared to using data from S2
only by about 2% (maximum).

A visual interpretation of the quality of the results
showed that classifications of multiband images containing
S1 data are still “noisy” despite these images having been
filtered before being classified. In order to further improve
the classification performance, we used a post-classified
product smoothing technique. Effectively, the results im-
proved and the classification of data derived from S1 only
reached a remarkable OA of 81.12% (K=0.75) for the best
scenario (VV, VH, and VV/VH). The smoothing also
contributed to the improvement of the classification accu-
racy of combined products (S1 and S2), with an increase of
approximately 3% to reach the best accuracy over the 20
scenarios covered in total, which is worth about 89% of OA
(with K =0.85).



14 Scientifica

VV,VH VV, VH

0051 2
— — KM 0051 2
—— KM
VV,VH, VV/VH VV, VH, VV/VH

N
A

Smoothing
—eep
00,51 2
— — ) 0051 2
— — )
VYV, VH, texture N V'V, VH, texture
A
0051 2
[ =BG
VV, VH, VV/VH, texture
0051 2
- Km
0051 2
—— K
[ Orange I Bare soil
[ Cereal I Double cropping
[ Fallow I Olive
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FIGURE 12: Final land use maps. (a) Optical (85.83%, K=0.81), (b) radar (81.12%, K=0.75) and (c) optical combined with SAR (88.90%,

K=0.85).

6. Conclusions

LC/LU mapping is, for land management, a necessary tool
for understanding, analyzing, and monitoring land cover
dynamics in order to better exploit land. In addition, the
availability of high spatio-temporal resolution satellite
data, which have the advantage of covering surfaces at all
scales (local, regional, and continental), offers the pos-
sibility of carrying out this mapping. The use of optical
remote sensing including radiometric indices, combined
with the textural characteristics of SAR remote sensing
imagery, is generally accepted as a mean of improving
classification performance [39, 57-61]. The objective of
this study was to identify and map the different crop types
in the irrigated R3 perimeter using high-resolution
multidate satellite images S1 and S2 of the year 2018. The
R3 sector characterized by a semiarid climate is located
around the city of Sidi-Rehhal about 40 km southeast of
the city of Marrakech.

The classification of the NDVTI time series alone resulted
in an OA of about 86% (K = 0.81), while the best result was
found by the integration of the S1 and S2 products, and
particularly by using NDVI combined with the VH cross-

polarization and textural characteristics (about OA =87%,
K=0.82 before smoothing and OA=89%, K=0.85 after
smoothing). We noticed that, in general, the parallel VV
polarization improves accuracy very slightly, while the de-
rived VV/VH band hardly influences the quality of the
classifications. The integration of all S1 products (VV, VH,
VV/VH, textural characteristics) with the NDVI series
resulted in decreased OA and K coefficient. The worst result
was found for the S1 product classification only, with an OA
not exceeding, for the best case scenario, 77% (K =0.65). A
visual interpretation of the quality of the results showed that
classifications of combined images containing SAR data are
still “noisy” despite these images having been filtered before
being classified. In order to further improve the accuracy, we
used a post-classified product smoothing technique. Effec-
tively, the results improved and the classification of data
derived from S1 only reached a significant OA of 81.12%
(K=75) for the best scenario (VV, VH, and VV/VH). The
smoothing also contributed to the improvement of the
classification accuracy of combined products (S1 and S2),
with an increase of approximately 3% to reach the best OA
on a total of 63 classifications, which is worth about 89%
(K=0.85).
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The results are largely in agreement with the literature.
For our best classifications, it can be said on the one hand
that the integration of S1 and S2 has increased the accuracy
and quality of classification compared to the single use of S1
or S2. On the other hand, the results found by using S1
products only hold promise for the use of radar data for
ground mapping as an alternative to optical data.

As perspective, it will be necessary to test the synergistic
use of S1 and S2 sensors for mapping a larger area (e.g., the
Haouz plain). We can then expect a decrease in perfor-
mance, linked to confusion due to the dimensionality and
diversity of the land cover types. To overcome this, we can
consider expanding the database, using very high resolution
image processing techniques for the detection of orange and
olive trees as well as in-depth work on the smoothing and
parameterization of profiles.

Data Availability

Sentinel-1 and Sentinel-2 were acquired over the study area
and used for the present work. Sentinel-2 images can be
downloaded from the Theia CNES website: https://theia.
cnes.fr/. Sentinel-1 data can be downloaded from PEPS
CNES website: https://peps.cnes.fr/. The SAR imagery was
preprocessed using the Sentinel Application Platform
(SNAP) and ENVI software
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