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When solving structural dynamic problems, the displacement algorithm needs only calculating and storing structure’s dis-
placements in the main calculation process, which makes the displacement algorithm have advantages over multivariable al-
gorithms in calculation efficiency and storage requirements. By using a novel approach based on dimensional analysis firstly given
by the first author, a one-parameter family of two-step unconditionally stable noniterative displacement algorithms, referred to as
the CQ-2x method, is developed. Compared with other unconditionally stable noniterative multivariable algorithms such as the
representative KR-αmethod, the proposed method has advantages in several aspects./e CQ-2xmethod is unconditionally stable
regardless of stiffness hardening or stiffness weakening, while the KR-α method is only conditionally stable in case of stiffness
hardening. /e CQ-2xmethod needs only one solver within one time step, while the KR-αmethod needs two solvers within one
time step, whichmakes the CQ-2xmethod show higher efficiency. Numerical examples are presented to demonstrate the potential
of the proposed method.

1. Introduction

Direct integration methods are commonly used to solve
structural dynamics equations. According to whether iter-
ation is needed to solve nonlinear dynamic problems, these
methods can be divided into two categories: implicit and
noniterative. If the solution for the next time step depends
on the responses in future time steps, then the algorithm is
classified as an implicit algorithm [1, 2]. /e well-known
Houbolt [3], Newmark [4], Wislon [5], HHT-α [6], WBZ α
[7], generalized-α [8], and Bath [9–11] algorithms are ex-
amples of implicit algorithms. When the implicit methods
are used to solve nonlinear structural dynamics equations,
an iterative scheme (for example, the Newton–Raphson
algorithm) is required in each time step which is often
complicated and time consuming.

By contrast, equilibrium in noniterative algorithms is
satisfied in the previous time step rather than the current
step; consequently, such algorithms do not require the

formation of the tangent stiffness matrix or any iterative
calculations and are computationally more efficient than
implicit algorithms in the nonlinear case when using same
time step size.

/e central difference method (CDM) [1, 2] is the most
common and effective noniterative method since it not only
needs no nonlinear iteration but also needs no solver for
nonlinear problems. However, the CDM is only condi-
tionally stable, which means extraordinary small time step
size must be used in order to make the calculation stable./e
conditionally stable CDM is preferred when the time step
size required for accuracy is of the same order as the stability
limit of the algorithm, e.g., in wave propagation problems
[2, 12]. Nevertheless, unconditionally stable noniterative
algorithms are more useful for solving nonlinear structural
dynamics problems.

Chang’s algorithms [13–16], the CR [17] method, and the
KR-α [18] method are examples of unconditionally stable
noniterative algorithms. /e first unconditionally stable
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noniterative structure-dependent integration method was
developed by Chang [13]. An assessment of such structure-
dependent unconditionally stable noniterative and semi-
explicit (SE) algorithms for application to dynamic problems
has been presented by Kolay and Ricles [19]. /ese authors
found that an SE algorithm may generate large damping
forces when a realistic time step size is used for the nonlinear
transient analysis of realistic structural systems subjected to
seismic excitations, whereas the KR-α method [18] may
produce high-frequency overshoot. Furthermore, uncon-
ditionally stable noniterative model-dependent algorithms
may become conditionally stable when severe stiffness
hardening occurs, and most of them require the solution of
linear equations whose coefficient matrix is nondiagonal
twice within the one time step, which lowers their com-
putational efficiency. When the number of DOFs of the
structure is large, the majority of the computation time of an
algorithm is consumed in solving linear equations whose
coefficient matrices are nondiagonal. From the perspective
of computational efficiency, it is preferable for an algorithm
to solve a system of linear equations only once per time step.

In conjunction with the total energy framework and a
generalized time-weighted residual approach, Har and
Tamma [20, 21] have provided good guidance for developing
new time integration algorithms and procedures for evalu-
ating new and existing algorithms. However, the uncondi-
tionally stable noniterative structure-dependent integration
methods can hardly be evaluated by those guidances. /e
algorithms including the structure-dependent algorithm may
be easier to be designed by using a novel approach developed
by the first author of the current study based on dimensional
analysis. Most of the commonly used algorithms for structural
dynamics analysis consist of one motion equation and two
difference equations of displacement and velocity. By con-
trast, the novel dimensional analysis approach presented here
relies on only a simple objective function or functions (the
case of multiple functions will not be discussed in this paper),
and the assumptions concerning displacement, velocity, and
acceleration are implicitly included in their Taylor series
expansions and the dynamic equilibrium equation.

When solving structural dynamic problems, according
to the types of physical quantities that must be involved in
the main calculation steps, the algorithm can be divided into
the single variable method and multivariable method. As a
single variable method, the displacement method needs only
calculating and storing displacements in the calculation
process, which makes the displacement method have ad-
vantages over other multivariable algorithms in calculation
efficiency and storage requirements. So the novel approach
was applied firstly to design the displacement method. By
using this novel approach, a two-step unconditionally stable
noniterative displacement algorithm (NDA) called the CQ-
2x method (a two-step algorithm named after the first au-
thor) has been proposed [22]. /e CQ-2xmethod combines
unconditional stability with noniterative formulations of
both displacement and velocity, the use of one solver per
time step, and no overshoot in either displacement or ve-
locity. However, CQ-2x does not offer controllable nu-
merical dissipation. To introduce controllable numerical

damping, while simultaneously preserving the previously
mentioned desirable numerical characteristics of the CQ-2x
algorithm, a three-step displacement algorithm called the
CQ-3 method [23] with controllable numerical dissipation
has also been developed. However, the need for three steps is
a disadvantage that may lower the efficiency of the algo-
rithm. /us, the development of a family of two-step un-
conditionally stable NDAs with controllable numerical
damping is the main task of this paper.

/e article begins with an objective function for a two-
step NDA. /en, the preliminary form of the two-step NDA
is obtained through dimensional analysis. Since there are 9
coefficients to be determined in the preliminary form of the
NDA, equations for determining those coefficients from the
algorithm’s consistency and stability are provided. Since the
algorithm’s consistency and stability requirements cannot be
used to determine all coefficients, the remaining free coef-
ficients b5, b7, and b8 are then determined from other
characteristics of the algorithm, such as the relative period
error and numerical damping ratio. A self-starting proce-
dure is presented, and the overshoots in displacement and
velocity are analyzed; subsequently, three numerical ex-
amples are provided to demonstrate the accuracy, stability,
and efficiency of the proposed method.

2. Preliminary Form of NDA

For a single-DOF system, the linear structural dynamics
equation can be written as

ma(t) + cv(t) + ku(t) � f(t). (1)

In the equation above, m, c, and k represent the mass,
damping, and stiffness, respectively; a, v, and u represent the
acceleration, velocity, and displacement of the mass, re-
spectively; f is the external force; and t is the time.

When no nonlinear damping is considered, the non-
linear structural dynamics equation can be written as follows
[18]:

ma(t) + cv(t) + fin(u, t) � fext(t), (2)

where fext(t) is the external force.
/e nonlinearity of a structure may be complex. In some

cases, the structural nonlinearity can be expressed in terms
of nonlinear damping and nonlinear stiffness. In these cases,
the nonlinear structural dynamics equation can be rewritten
as

ma(t) + c(t)v(t) + k(t)u(t) � f(t), (3)

where the nonlinear damping c(t) and the nonlinear stiff-
ness k(t) are given by

k(t) � k(u(t), v(t), t),

c(t) � c(u(t), v(t), t).
(4)

In order to obtain the numerical solution at the discrete
time point, according to the definition of the “noniterative”
displacement algorithm given above, the objective of a two-
step NDA is to find ut+2Δt when ut+Δt, ut, ft+Δt, m, ct+Δt,
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kt+Δt, and Δt are given; this can be expressed by the objective
function given in equation (5) where ut+2Δt is regarded as a
dependent variable and ut+Δt, ut, ft+Δt, m, ct+Δt, kt+Δt, and Δt
are regarded as independent variables:

ut+2Δt � ut+2Δt m, ct+Δt, kt+Δt, ft+Δt, ut+Δt, ut,Δt( 􏼁, (5)

where Δt is the time step size and the subscripts denote
discrete time points. Because the displacement algorithm is
to be designed, there are no velocity and acceleration oc-
curring in equation (5). A displacement algorithm designed
based on dimensional analysis to solve the objective function
given in equation (5) can be written as follows:

m + b1ct+ΔtΔt + b2kt+ΔtΔt
2

􏼐 􏼑ut+2Δt � b3m + b4ct+ΔtΔt + b5kt+ΔtΔt
2

􏼐 􏼑ut+Δt

+ b6m + b7ct+ΔtΔt + b8kt+ΔtΔt
2

􏼐 􏼑ut + b9ft+ΔtΔt
2
,

(6)

where bi are undetermined coefficients. /e detailed deri-
vation of equation (6) based on dimensional analysis is
presented in Appendix A. bi can be determined from the
NDA’s consistency and stability requirements.

3. Consistency Analysis to Determine bi

/e consistency of an NDA of the form given in equation (6)
can be analyzed by calculating the local algorithmic error. To
calculate the local algorithmic error εu2+3Δt

between the exact
displacement u(t + 2Δt) and the computed displacement
ut+2Δt, it is assumed that, in equation (6),

ut � u(t), (7a)

ut+Δt � u(t + Δt), (7b)

ut+2Δt � u(t + 2Δt) − εut+2Δt
, (7c)

ct+Δt � c(t + Δt), (7d)

kt+Δt � k(t + Δt), (7e)

ft+Δt � f(t + Δt), (7f)

where a quantity with brackets “()” denotes an exact
quantity and a quantity without brackets “()” but with a
subscript denotes a computed quantity.

Substituting equations (7a)–(7f) into equation (6) yields
the following:

m + b1c(t + Δt)Δt + b2k(t + Δt)Δt2􏼐 􏼑εut+2Δt

� m + b1c(t + Δt)Δt + b2k(t + Δt)Δt2􏼐 􏼑u(t + 2Δt)

− b3m + b4c(t + Δt)Δt + b5k(t + Δt)Δt2􏼐 􏼑u(t + Δt)

− b6m + b7c(t + Δt)Δt + b8k(t + Δt)Δt2􏼐 􏼑u(t) − b9f(t + Δt)Δt2.

(8)

Taylor series expansions of u(t + Δt), u(t + 2Δt),
v(t + Δt), and a(t + Δt) can be written as follows:

u(t + Δt) � u(t) + v(t)Δt +
1
2

a(t)Δt2 +
1
6

_a(t)Δt3 + · · · ,

(9a)

u(t + 2Δt) � u(t) + 2v(t)Δt + 2a(t)Δt2 +
4
3

_a(t)Δt3 + · · · ,

(9b)

v(t + Δt) � v(t) + a(t)Δt +
1
2

_a(t)Δt2 +
1
6

€a (t)Δt3 + · · · ,

(9c)

a(t + Δt) � a(t) + _a(t)Δt +
1
2

€a (t)Δt2 +
1
6

a
ṫ
(t)Δt3 + · · · ,

(9d)

where a superscripted dot denotes differentiation with
respect to time. /e nonlinear dynamic equilibrium of
equation (3) in step t + Δt is written as

f(t + Δt) � ma(t + Δt) + c(t + Δt)v(t + Δt)

+ k(t + Δt)u(t + Δt).
(10)

Substituting equations (9a), (9c), and (9d) into equation
(10) yields

f(t + Δt) � m(a(t) + _a(t)Δt + · · ·) + c(t + Δt)(v(t)

+ a(t)Δt + · · ·) + k(t + Δt)(u(t) + v(t)Δt + · · ·).

(11)

Substituting equations (9a), (9b), and (11) into equation
(8) yields

m + b1c(t + Δt)Δt + b2k(t + Δt)Δt2􏼐 􏼑εut+2Δt

� e0 + e1Δt + e2Δt
2

+ e3Δt
3

+ e4Δt
4

+ e5Δt
5

· · · ,
(12)

where the expressions for e0, e1, e2, e3, e4, and e5 are given in
Appendix B.

Rewriting equation (12) yields
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lim
Δt⟶0

εut+2Δt
� lim
Δt⟶0

e0 + e1Δt + e2Δt
2

+ e3Δt
3

+ e4Δt
4

+ e5Δt
5

· · ·

m + b1c(t + Δt)Δt + b2k(t + Δt)Δt2
,

� lim
Δt⟶0

e0 + e1Δt + e2Δt
2

+ e3Δt
3

+ e4Δt
4

+ e5Δt
5

· · ·

m
.

(13)

/e statement that the NDA has a nominal nth order
time accuracy of displacement means that the following
holds:

lim
Δt⟶0

εut+2Δt

Δtn � 0. (14)

/e combination of equations (13) and (14) leads to

lim
Δt⟶0

εut+2Δt

Δtn �
1
m

e0

Δtn +
e1

Δtn− 1 +
e2

Δtn− 2 +
e3

Δtn− 3 + · · · +􏼠 􏼡 � 0.

(15)

Substituting n � 2 into equation (15) yields the condition
that must be met for the NDA to achieve a nominal second-
order time accuracy of displacement:

lim
Δt⟶0

εut+2Δt

Δt2
�

1
m

e0

Δt2
+

e1

Δt
+ e2 + e3Δt + · · · +􏼠 􏼡 � 0.

(16)

Equation (16) is satisfied only when e0 � e1 � e2 � 0, and
the conditions for which can be obtained by simultaneously
solving equations (B.2a), (B.2b), and (B.2c) (the detailed
derivation can be seen in Appendix B):

b1 � 1 − b7,

b2 � 1 + b8 + b5,

b3 � 2,

b4 � 1 − 2b7,

b6 � − 1,

b9 � 1.

(17)

Equation (17) ensures that the NDA will achieve a
nominal second-order time accuracy of displacement.

To confirm the nominal second-order time accuracy of
displacement achieved with equation (17), we can substitute
equation (17) into equation (12) and obtain the following
equation:

εut+2Δt
�

− Δt3 120 1 + b5 + 2b8( 􏼁ω2
t+Δtvt + 120 1 − 2b7( 􏼁atξt+Δtωt+Δt􏼐 􏼑 + ϑΔt4

120 b5 + b8 + 1( 􏼁Ω2t+Δt + 240 1 − b7( 􏼁ξt+ΔtΩt+Δt + 120
, (18)

where

ωt+Δt �

��������

k(t + Δt)
m

􏽳

,

ξt+Δt �
c(t + Δt)
2mωt+Δt

,

Ωt+Δt � ωt+ΔtΔt.

(19)

/e substitution of equation (17) into equation (6) yields
an NDA with a nominal second-order time accuracy of
displacement:

m + 1 − b7( 􏼁ct+ΔtΔt + 1 + b8 + b5( 􏼁kt+ΔtΔt
2

􏼐 􏼑ut+2Δt

� 2m + 1 − 2b7( 􏼁ct+ΔtΔt + b5kt+ΔtΔt
2

􏼐 􏼑ut+Δt

+ − m + b7ct+ΔtΔt + b8kt+ΔtΔt
2

􏼐 􏼑ut + ft+ΔtΔt
2
.

(20)

It can be seen from the derivation of equation (20) that
the NDA is derived from only one objective function,
equation (5). /e possible assumed relationships among the
displacement, velocity, and acceleration are all implied in the
Taylor series expansions (as seen in equations (9a)–(9d)) and
the nonlinear dynamic equilibrium equation (as seen in

equation (10)). Newmark’s assumptions (with either con-
stant coefficients or structure-dependent coefficients) con-
cerning displacement and velocity are not needed for the
NDA family derived in this paper although they are needed
for most other algorithms; thus, this derivation is more
comprehensive and allows no promising algorithms to be
missed when the objective function is determined. It should
be noted here that the NDA accuracy analysis applies to the
case of nonlinear structural dynamics since nonlinear
equation (10) is used in the derivation instead of linear
equation (1), which is also a point of difference with respect
to other algorithms.

When calculation of the velocity is necessary, it can be
achieved with acceptable accuracy by means of any appli-
cable displacement difference approximation. For example,
one can use, but is not limited to, the displacement difference
approximation used in the central-eccentric difference
method [24]:

vt+2Δt �
3ut+2Δt − 4ut+Δt + ut

2Δt
. (21)

Equation (21) has a nominal time accuracy of velocity of
at least first order, and the local algorithmic velocity error
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εvt+2Δt
(� v(t + 2Δt) − vt+2Δt) when this approximation is

applied in the proposed CQ-2x method is

εvt+2Δt
�

− Δt2 80 _at + 360 1 + b5 + 2b8( 􏼁ω2
t+Δtvt + 360 1 − 2b7( 􏼁ξt+Δtωt+Δtat􏼐 􏼑 + φ Δt3􏼐 􏼑

240 b5 + b8+( 􏼁Ω2 + 480 1 − b7( 􏼁ξΩ + 240
. (22)

After the noniterative calculation of ut+2Δt and vt+2Δt,
at+2Δt can be calculated from the nonlinear dynamic equi-
librium (as given in equation (3)) at step t + 2Δt:

at+2Δt �
1
m

ft+2Δt − ct+2Δtvt+2Δt − kt+2Δtut+2Δt( 􏼁. (23)

Equation (23) has a nominal time accuracy of acceler-
ation of at least first order, and when this approximation is
applied in the CQ-2x method, the local algorithmic accel-
eration error εat+2Δt

(� a(t + 2Δt) − at+2Δt) can be written as

εat+2Δt
�
Δt2ξt+2Δtωt+2Δt 2 _at + 9 1 + b5 + 2b8( 􏼁ω2

t+Δtvt + 9 1 − 2b7( 􏼁ξt+Δtωt+Δtat􏼐 􏼑 + ϑ Δt3􏼐 􏼑

3 1 + b5 + b8( 􏼁Ω2t+Δt + 6 1 − b7( 􏼁ξt+ΔtΩt+Δt + 3
, (24)

where

ωt+2Δt �

���������

k(t + 2Δt)
m

􏽳

,

ξt+2Δt �
c(t + 2Δt)
2mωt+2Δt

.

(25)

/e accuracy expressed above is called the nominal
accuracy because the derivation of the displacement con-
sistency assumes that the values of u at time steps t and t +

Δt are known exactly, which cannot be ensured, meaning
that this assumption leads to additional errors. However, it
can be concluded that an NDA described by equations (20),
(21), and (23) has a global time accuracy of at least first order,
as will be validated by Example 1.

4. Stability Analysis to Determine bi

An algorithm is convergent if and only if it is consistent and
stable./e consistency of the proposed NDA family has been
analyzed above. In this section, the stability of an NDA with
the form given in equation (20) will be studied. It should
again be noted here that the NDA consistency analysis
applies to the solution of nonlinear structural dynamics
problems of the form given in equation (3) because equation
(3), not equation (1), is used throughout the entire deri-
vation. For the same reason, the following NDA stability
analysis also applies to the solution of nonlinear structural
dynamics problems of the form given in equation (3). /e
NDA expressed in equation (20) can be rewritten as follows:

ut+2Δt

ut+Δt

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� A

ut+Δt

ut

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+

b9ft+ΔtΔt
2

m + 1 − b7( 􏼁ct+ΔtΔt + 1 + b8 + b5( 􏼁kt+ΔtΔt
2

0

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (26)

where the amplification matrix A is

A �

A11 A12

1 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (27)

%A11 �
2m + 1 − 2b7( 􏼁ct+ΔtΔt + b5kt+ΔtΔt

2

m + 1 − b7( 􏼁ct+ΔtΔt + 1 + b8 + b5( 􏼁kt+ΔtΔt
2,

(28a)

A12 �
− m + b7ct+ΔtΔt + b8kt+ΔtΔt

2

m + 1 − b7( 􏼁ct+ΔtΔt + 1 + b8 + b5( 􏼁kt+ΔtΔt
2. (28b)

A stability study similar to the one conducted by
Hilber and Hughes [25] is performed (the detailed der-
ivation can be seen in Appendix C). /e stability con-
ditions for a first-order time-accurate NDA can be
written as follows:

Shock and Vibration 5



− 1≤A2 ≤ 1, (29a)

−
1
2

1 + A2( 􏼁≤A1 ≤
1
2

1 + A2( 􏼁, (29b)

where

A1 �
1
2
tr(A) �

A11 + A22

2
�
1
2

2m + 1 − 2b7( 􏼁ct+ΔtΔt + b5kt+ΔtΔt
2

m + 1 − b7( 􏼁ct+ΔtΔt + 1 + b8 + b5( 􏼁kt+ΔtΔt
2, (30a)

A2 � |A| � −
− m + b7ct+ΔtΔt + b8kt+ΔtΔt

2

m + 1 − b7( 􏼁ct+ΔtΔt + 1 + b8 + b5( 􏼁kt+ΔtΔt
2. (30b)

By considering ωt+Δt �
��������
kt+Δtm

− 1
􏽰

, ct+Δt � 2mωt+Δtξt+Δt,
and ωt+ΔtΔt � Ωt+Δt, where ωt+Δt is the natural frequency

and ξt+Δt is the damping ratio; equations (30a) and (30b) at
time t + Δt can be rewritten as follows:

A1 �
1
2
tr(A) �

A11 + A22

2
�
1
2

2 + 2 1 − 2b7( 􏼁ξt+ΔtΩt+Δt + b5Ω
2
t+Δt

1 + 2 1 − b7( 􏼁ξt+ΔtΩt+Δt + 1 + b8 + b5( 􏼁Ω2t+Δt
. (31a)

A2 � |A| � −
− 1 + 2b7ξt+ΔtΩt+Δt + b8Ω

2
t+Δt

1 + 2 1 − b7( 􏼁ξt+ΔtΩt+Δt + 1 + b8 + b5( 􏼁Ω2t+Δt
. (31b)

Substituting equations (31a) and (31b) into equations
(29a) and (29b) yields the following:

1 + 1 − b7( 􏼁2ξt+ΔtΩt+Δt + 1 + b8 + b5( 􏼁Ω2t+Δt ≥ 0, (32a)

4 + 2 − 4b7( 􏼁2ξt+ΔtΩt+Δt + 1 + 2b5( 􏼁Ω2t+Δt ≥ 0, (32b)

2ξt+ΔtΩt+Δt + 1 + 2b8 + b5( 􏼁Ω2t+Δt ≥ 0. (32c)

Equations (32a)–(32c) give the stability conditions for
the NDA that apply when solving a nonlinear structural
dynamics problem of the form given in equation (3) with at
least first-order time accuracy. Equation (20) shows that the
CDM is only one specific kind of NDA with b5 � − 1,
b7 � 1/2, and b8 � 0. To check the correctness of the NDA
stability conditions given in equations (32a)–(32c), one can
solve for the domain of stability of the CDM simply by
substituting b5 � − 1, b7 � 1/2, and b8 � 0 into equations
(32a)–(32c). /en, equations (32a)–(32c) take the following
form:

1 + ξt+ΔtΩt+Δt ≥ 0, (33a)

4 − Ω2t+Δt ≥ 0, (33b)

2ξt+ΔtΩt+Δt ≥ 0. (33c)

It can be seen that equations (33a)–(33c) yield the correct
stability domain for the CDM, Ω2t+Δt ≤ 4. Since the stiffness
ratio δ (where δ < 1 indicates stiffness softening and δ > 1
indicates stiffness hardening) does not appear in the

amplification matrix A of CQ-2x but does appear in the
amplification matrices of other algorithms (for example,
Chang’s algorithms [16]), which causes them to become
unstable when stiffness hardening occurs, it may be con-
cluded that when used to solve the nonlinear structural
dynamics equation given in equation (3), the CQ-2xmethod
is unconditionally stable regardless of whether stiffness
hardening or softening occurs as long as equations
(32a)–(32c) are always satisfied when Ω ∈ [0,∞) and
ξ ∈ [0,∞), which will be validated by Example 2.

5. CQ-2x Method with Controllable
Numerical Dissipation

Up to this point, three coefficients have remained unde-
termined: b5, b7, and b8./ese coefficients can be determined
from the algorithm’s characteristics of unconditional sta-
bility and acceptable numerical dispersion and dissipation.

5.1. Determination of b7. /e unconditional stability of an
NDA of the form given in equation (20) means that when
Ω ∈ [0, +∞) and ξ ∈ [0, +∞), equations (32a)–(32c) are
always satisfied, which requires that the following must hold:

1 − b7 ≥ 0,

1 + b8 + b5 ≥ 0,

2 − 4b7 ≥ 0,

1 + 2b5 ≥ 0,

1 + 2b8 + b5 ≥ 0.

(34)

6 Shock and Vibration



An intermediate variable x is introduced:

x � 1 + 2b8 + b5. (35)

Consequently, b8 can be written as

b8 �
1
2

x − b5 − 1( 􏼁. (36)

/en, simplifying equation (34) leads to

b7 ≤ 0.5,

b8 ≤x,

b5 ≥ − 0.5,

x≥ 0.

(37)

An analysis shows that, for a damping structure, a larger
b7 leads to more satisfactory algorithmic characteristics;
thus, b7 is assigned its largest possible value of 0.5 according
to equation (37):

b7 � 0.5. (38)

Substituting equations (36) and (38) into equation (20)
yields the preliminary algorithmic form of the CQ-2x
method:

m + 0.5ct+ΔtΔt +
1
2

x + b5 + 1( 􏼁kt+ΔtΔt
2

􏼒 􏼓ut+2Δt � 2m + b5kt+ΔtΔt
2

􏼐 􏼑ut+Δt

+ − m + 0.5ct+ΔtΔt +
1
2

x − b5 − 1( 􏼁kt+ΔtΔt
2

􏼒 􏼓ut + ft+ΔtΔt
2
.

(39)

It can be seen from the above analysis that there are only
two coefficients, b5 and x, that are undetermined in the
preliminary form of the CQ-2x method. /ese coefficients
will be determined by introducing controllable numerical
dissipation into CQ-2x.

5.2. Determination of b5 and x. When ξ � 0, according to
equation (36), equations (31a) and (31b) can be written as

%A1 �
A11 + A22

2
�

1 +(1/2)b5Ω
2

1 + (1/2)b5 +(1/2)x +(1/2)( 􏼁Ω2
,

(40a)

A2 �
1 + (1/2) +(1/2)b5 − (1/2)x( 􏼁Ω2

1 + (1/2) +(1/2)b5 +(1/2)x( 􏼁Ω2
. (40b)

/e effects of b5 and x on the relative period error of the
preliminary CQ-2x method have been analyzed. /e results
when Δt/T � 0.1, b5 � − 0.5, − 0.3, 0, 0.3, 1, 2, and 4, and
x ∈ [0, 4] are plotted in Figure 2. It can be seen that, as b5 and
x increase, the relative period error also increases. /us, to
achieve the best accuracy, x and b5 should be assigned their
lowest possible values of 0 and − 0.5, respectively. /e
analysis shows that when x � 0 and b5 � − 0.5, the prelim-
inary CQ-2x method has a nominal third-order time ac-
curacy of displacement and a global second-order time
accuracy; this will be validated by Example 1. However, if
numerical dissipation is needed to filter out spurious vi-
brations in high-vibration modes, neither x � 0 nor b5 �

− 0.5 is appropriate.
It can be proven that when x � 0, the numerical damping

ratio is also ξ � 0, as shown in the following equation:

x � 0,

A2 ≥A
2
1,

A2 �
1 + (1/2) +(1/2)b5( 􏼁Ω2

1 + (1/2) +(1/2)b5( 􏼁Ω2
� 1,

ρ(A) �
���
A2

􏽰
� 1,

ξ � 0.

(41)

It can also be proven that when b5 � − 0.5, the numerical
damping ratio ξ of very high vibration modes (Ω⟶∞) is
also zero, as shown in the following equation:

b5 � − 0.5,

A2 ≤A
2
1,

lim
Ω⟶∞

ρ(A) � lim
Ω⟶∞

A1 −

�������

A
2
1 − A2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

− (1/4) − (1/2)x

(1/2)x +(1/4)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 1,

lim
Ω⟶∞

ξ � 0.

(42)

To introduce an appropriate level of numerical dissi-
pation, b5 and x must be greater than their lowest values of 0
and − 0.5, respectively. /e numerical damping ratio de-
pends on the spectral radius of the amplification matrix. It
may be preferable for the spectral radius of the amplification
matrix A of the preliminary CQ-2xmethod to decrease with
increasing Ω with no bifurcation. According to equations
(D1a) and (D1b), no bifurcation occurs when A2 ≥A2

1, which
requires the following:
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A2 − A
2
1 � −

x
2

4
−

b5

2
−
1
4

􏼠 􏼡Ω4 +Ω2 ≥ 0, (whenΩ ∈ [0, +∞)). (43)

Equation (43) is satisfied when

b5 ≥
x
2

2
−
1
2
. (44)

Since a lower value of b5 results in a higher accuracy, as
mentioned before, b5 is assigned the lowest possible value
according to equation (44):

b5 �
x
2

2
−
1
2
. (45)

Substituting equation (45) into equation (39) yields

m +
1
2
ct+ΔtΔt +

(x + 1)
2

4
kt+ΔtΔt

2
􏼠 􏼡ut+2Δt � 2m +

x
2

− 1
2

kt+ΔtΔt
2

􏼠 􏼡ut+Δt

+ − m +
1
2
ct+ΔtΔt −

(x − 1)
2

4
kt+ΔtΔt

2
􏼠 􏼡ut + ft+ΔtΔt

2
.

(46)

Equation (46) is the final algorithmic form of dis-
placement calculation in the CQ-2x method.

To determine x, while simultaneously confirming the
unconditional stability of the CQ-2x method, consider the
following two extreme cases: Ω⟶ 0 and Ω⟶∞. In
accordance with equations (31a) and (31b), (36), (45), and
(46) and considering the limits, it can be shown that
equation (C1) reduces to the following:

(λ − 1)
2

� 0, whenΩ⟶ 0, (47a)

λ −
x − 1
x + 1

􏼒 􏼓
2

� 0, whenΩ⟶∞. (47b)

It can be calculated from equation (47b) that

x �
1 − ρ∞
1 + ρ∞

. (48)

Figures 3 and 4 show how the spectral radius of the CQ-
2x method varies with ρ∞ and Ω; the findings are fully
consistent with the above analysis.

5.3.+e Proposed Algorithm. Now that all coefficients in the
preliminary NDA form presented in equation (6) have been
determined, a family of unconditionally stable noniterative
algorithms, collectively referred to as the CQ-2x method

0.5–0.5
A1

A2

(1, 1)(–1, 1)

–1

ρ < 1 ρ > 1

Figure 1: NDA stability domain.
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with one-parameter x, can be obtained by combining
equations (21), (23), (46), and (48), which are rewritten as

m +
1
2
ct+ΔtΔt +

(x + 1)
2

4
kt+ΔtΔt

2
􏼠 􏼡ut+2Δt � 2m +

x
2

− 1
2

kt+ΔtΔt
2

􏼠 􏼡ut+Δt

+ − m +
1
2
ct+ΔtΔt −

(x − 1)
2

4
kt+ΔtΔt

2
􏼠 􏼡ut + ft+ΔtΔt

2
,

(49a)

vt+2Δt �
3ut+2Δt − 4ut+Δt + ut

2Δt
, (49b)

at+2Δt �
1
m

ft+2Δt − ct+2Δtvt+2Δt − kt+2Δtut+2Δt( 􏼁, (49c)

where
x �

1 − ρ∞
1 + ρ∞

. (49d)

5.4. Stability for Systems with Nonlinear Stiffness. It has been
demonstrated that the CQ-2x method is unconditionally
stable when it is used to solve the nonlinear structural
dynamics equation given in equation (3). Here, the stability
of CQ-2x when it is used to solve the nonlinear structural
dynamics equation given in equation (2) will be analyzed.
When a general nonlinear structural dynamics problem
expressed in the form of equation (2) is to be solved,
equation (2) is often written in the incremental form, and the
z transform [17] can be used to explore an algorithm’s
stability for the cases of stiffness hardening and softening.

/e solution to equation (2) is also often written in the
incremental form, as in the following equation:

m at+Δt − at( 􏼁 + c vt+Δt − vt( 􏼁 + ktan ut+Δt − ut( 􏼁 � ft+Δt − ft,

(50)

where ktan is the tangent stiffness at time step t + Δt [18].
When addressing structural dynamic nonlinearity in the

form of equation (2), the CQ-2xmethod uses equations (46),
(21), and (50).

/e stability of an integration algorithm is generally
analyzed using one of two approaches, namely, recurrence
relations using an amplification matrix or discrete control
theory. /e unconditional stability of CQ-2x when solving
nonlinear equation (3) has been analyzed through the use of
an amplification matrix. In this section, discrete control
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Figure 3: Spectral radius of CQ-2x when ξ � 0.
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theory will be used to analyze the stability of CQ-2x when
solving nonlinear equation (2). /e discrete z transform and
its real translation property are defined as follows [18]:

X(z) � Z x[n]{ } � 􏽘
∞

n�0
x[n]z

− n
,

Z x[n − k]{ } � z
− k

X(z),

Z u(i+1)Δt􏼐 􏼑 � X(z),

Z v(i+1)Δt􏼐 􏼑 � Xv(z),

Z a(i+1)Δt􏼐 􏼑 � Xa(z),

Z f(i+1)Δt􏼐 􏼑 � F(z).

(51)

/e stability of CQ-2x when solving nonlinear equation
(2) can be analyzed by applying discrete control theory to
equations (46), (21), and (50).

First, the stability analysis of equation (46) using the z
transform is considered. By applying the z transform and its
real translation property to equation (46), this equation can
be solved to determine X(z) in terms of the system prop-
erties, the time step, and F(z). /is solution leads to the
discrete transfer function of the algorithm, which is defined
as the ratio of the z transforms of the output ui+1 and the
input fi+1 and can be expressed in the following general
form:

X(z)

F(z)
�

4z

d2z
2

+ d1z + d0
, (52)

where

d2 � m x
2

+ 2x + 1􏼐 􏼑Ω2t+Δt + 4ξt+ΔtΩt+Δt + 4􏽨 􏽩,

d1 � m 2 − 2x
2

􏼐 􏼑Ω2t+Δt − 8􏽨 􏽩,

d0 � m x
2

− 2x + 1􏼐 􏼑Ω2t+Δt − 4ξt+ΔtΩt+Δt + 4􏽨 􏽩.

(53)

It can be seen that the denominator of the transfer
function in equation (52) has the same form as the char-
acteristic equation given in equation (C1) for the amplifi-
cationmatrix of equation (46), whose unconditional stability
has been proven.

Since the displacement calculation is unconditionally
stable, the velocity calculation in equation (21), which de-
pends solely on the displacement, is also naturally uncon-
ditionally stable.

Now, the stability of equation (50) will be analyzed. By
combining equations (46), (21), and (50), the transfer
function defined as the ratio of the z transforms of the output
ai+1 and the input fi+1 can be expressed in the following
general form:

Xa(z)

F(z)
�

n3z
3

+ n2z
2

+ n1z + n0

d3z
3

+ d2z
2

+ d1z
, (54)

where

d3 � mΔt x
2

+ 2x + 1􏼐 􏼑Ω2t+Δt + 4ξt+ΔtΩt+Δt + 4􏽨 􏽩,

d2 � mΔt 2 − 2x
2

􏼐 􏼑Ω2t+Δt − 8􏽨 􏽩,

d1 � mΔt x
2

− 2x + 1􏼐 􏼑Ω2t+Δt − 4ξt+ΔtΩt+Δt + 4􏽨 􏽩.

(55)

Since n3, n2, n1, and n0 do not affect the algorithm’s
stability, for brevity, they are not listed in this paper.

Although the denominators of equations (52) and (54)
differ by a multiplicative factor Δt, their representative
characteristic equations are the same, which means that the
acceleration calculation using equation (50) is also uncon-
ditionally stable. An analysis shows that the ratio of ktan to
kt+Δt only affects the value of the numerator of equation (54).
/us, it can be concluded that CQ-2x is unconditionally
stable when it is used to solve the structural nonlinear
dynamics equation given in equation (2); this will be vali-
dated by Example 2.

5.5. Accuracy Analysis for the Linear System. /e accuracy of
an integration algorithm generally depends on its numerical
dispersion and energy dissipation characteristics. For the
purposes of an accuracy analysis, the solutions to a free
vibration problem obtained using CQ-2x can be written in
the form of equation (D3). /e two principal roots (no
spurious real root) can be used to analyze the numerical
dispersion and energy dissipation characteristics. /e first
characteristic is generally expressed in terms of the relative
period error, as defined in equation (D6). /e latter one can
be expressed in terms of the numerical damping ratio ξ, as
defined in equation (D4).

Figures 5 and 6 show the relative period errors (Pe) and
the equivalent damping ratios (ξ), respectively, of the
proposed CQ-2x method and the KR-α method for various
values of ρ∞. As shown in the figures, both Pe and ξ increase
with decreasing ρ∞, and ρ∞ � 0 produces the maximum Pe
and ξ.

Figure 5 shows that the numerical dispersion of CQ-2x is
similar to that of the KR-αmethod for the same value of ρ∞
when ρ∞ ≠ 1. Figure 6 shows that the KR-αmethod’s energy
dissipation is better than that of CQ-2x. However, at small
values of Ω, both Pe and ξ are small for CQ-2x
(ρ∞ ∈ [0.8, 1]) regardless of the value of ρ∞, which means
that the lower-mode responses in an MDOF system are
negligibly affected by the numerical damping. By contrast, ξ
increases with increasing Ω, indicating that the undesired
higher modes can be effectively damped out. Note that, for
ρ∞ � 1, the CQ-2x method exhibits no numerical energy
dissipation, and the Pe value becomes identical to that of the
KR-α (ρ∞ � 1) method and Newmark’s CAA method.

5.6. Self-Starting and Overshoot. /ere are several possible
methods of self-starting, which is a term that refers to a
parameterless unified starting procedure [26]. In this paper,
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the self-starting of CQ-2x relies on u− Δt, as calculated using
the CDM, as shown in the following equation:

u− Δt � u0 − vΔt +
1
2
a0Δt

2
. (56)

When t � − Δt, equation (46) can be written as

m +
1
2

cΔt +
(x + 1)

2

4
k0Δt

2
􏼠 􏼡uΔt � 2m +

x
2

− 1
2

k0Δt
2

􏼠 􏼡u0

+ − m +
1
2

cΔt −
(x − 1)

2

4
k0Δt

2
􏼠 􏼡u− Δt + f0Δt

2
.

(57)

Substituting equation (56) into equation (57) yields a
value for uΔt as follows:

m +
1
2

cΔt +
(x + 1)

2

4
k0Δt

2
􏼠 􏼡uΔt � m +

1
2

cΔt +
x
2

+ 2x − 3
4

k0Δt
2

􏼠 􏼡u0

+ m −
1
2

cΔt +
(x − 1)

2

4
k0Δt

2
􏼠 􏼡Δtv0 +

1
2

− m +
1
2

cΔt −
(x − 1)

2

4
k0Δt

2
􏼠 􏼡Δt2a0 + f0Δt

2
.

(58)

With known initial values of u0, v0, and a0, the value of
uΔt can be calculated using equation (58). /us, a self-
starting displacement calculation procedure for CQ-2x can
be obtained.

When the velocity is to be calculated, equation (59) can
be used, with a second-order time accuracy of velocity:

vΔt �
3uΔt − 3u0

Δt − 2v0
−
1
2
a0Δt. (59)

Equation (59) represents the self-starting velocity cal-
culation in CQ-2x.

When Ω0⟶∞, equation (58) becomes

lim
Ω0⟶∞

uΔt �
x
2

+ 2x − 3
(x + 1)

2 u0 +
(x − 1)

2

(x + 1)
2 Δtv0

−
1
2

(x − 1)
2

(x + 1)
2 Δt

2
a0.

(60)

For CQ-2x, as expressed in equation (46), the recursive
relationship among ut+2Δt, ut+Δt, and ut can be expressed as
follows:
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Figure 5: Relative period error of CQ-2x when ξ � 0.
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lim
Ω⟶∞

ut+2Δt �
2(x − 1)

1 + x
ut+Δt −

(1 − x)
2

(1 + x)
2ut. (61)

It can be seen from equations (60) and (61) that CQ-2x has
zero-order displacement overshoot. Similarly, it is easy to
find that CQ-2x has zero-order velocity overshoot by
considering equations (21) and (59). /us, CQ-2x can be
classified as a family of noniterative algorithms of the form
U0V0(ρ∞, ρ∞) [20].

5.7.CalculationProcedure forMDOFSystems. When applied
in MDOF systems, the forms of the aforementioned equa-
tions have some changes. When applied in MDOF systems,
m, ct+iΔt, and kt+iΔt appearing in a SDOF system should then
be replaced by matrices M, Ct+iΔt, andKt+iΔt; ut+iΔt, vt+iΔt,

at+iΔt, andft+iΔt appearing in a SDOF system should be
replaced by vectors ut+iΔt􏼈 􏼉, vt+iΔt􏼈 􏼉, at+iΔt􏼈 􏼉, and ft+iΔt􏼈 􏼉.
/e calculation procedure for MDOF systems is provided as
follows:

(1) Formulate the stiffness matrix K0, mass matrix M,
and damping matrix C0 of the systems.

(2) Select appropriate coefficient ρ∞ and time increment
Δt. Determine x by solving equation (49d).

(3) Obtain initial values u0􏼈 􏼉 and v0􏼈 􏼉. Calculate a0􏼈 􏼉 by

a0 � M
− 1

f0􏼈 􏼉 − C0 v0􏼈 􏼉 − K0 u0􏼈 􏼉( 􏼁. (62)

(4) Calculate uΔt􏼈 􏼉 and vΔt􏼈 􏼉 by equations (58) and (59),
respectively. /en, calculate nonlinear stiffness and
damping KΔt andCΔt by equation (4). Subsequently,
calculate aΔt􏼈 􏼉 by the following equation:

at+Δt �
1
m

ft+Δt − ct+Δtvt+Δt − kt+Δtut+Δt( 􏼁. (63)

(5) For each time step (i� 2, 4, 5, . . ., n), calculate uiΔt􏼈 􏼉

and viΔt􏼈 􏼉 by equations (49a) and (49b), respectively.
/en, calculate nonlinear stiffness and damping
KiΔt andCiΔt by equation (4). Subsequently, calculate
aiΔt􏼈 􏼉 by equation (49c).

/e main calculation efforts of CQ-2x are concentrated in
Step 5 discussed above. /e main calculation efforts in Step 5
are concentrated in equation (49a) because the coefficient
matrix (M + (1/2)Ct+ΔtΔt + ((x + 1)2/4)Kt+ΔtΔt2) in equa-
tion (49a) is nondiagonal and solving the coupling linear
equations needs ϑ(N3) times of multiplication or division.
/e computational costs consumed by equation (49b) are
ϑ(N), and those consumed by equations (4) and (3) are
ϑ(N2) since solving equation (4) only needs vector calcula-
tions and solving equation (3) only needs solving linear
decoupling equations whose coefficient matrix is the diagonal
matrix M. /us, it is true that there is only one solver of
equation (49a) within one time step for CQ-2x. Furthermore,
when no velocity and acceleration need to be calculated, the
entire calculation of CQ-2x can be completed with only the
involvement of displacement. In this case, the time con-
sumption of CQ-2x will become less, and the storage

requirements of CQ-2x will become considerably lower than
other unconditionally stable noniterative algorithms.

6. Numerical Examples

To evaluate the overall behavior and confirm the conver-
gence rate, controllable numerical dissipation, uncondi-
tional stability in case of stiffness hardening, and
computational efficiency of the derived algorithms, four
examples are given. /e CAA method, as an example of an
implicit algorithm, and the KR-αmethod, as an example of a
family of unconditionally stable structure-dependent non-
iterative algorithms, are considered for comparison.

6.1. Example 1. /e purpose of this example is to validate the
convergence rate of the CQ-2x method. Consider a single-
DOF linear resonance problem with the initial conditions
u(0) � v(0) � 1:

a(t) + ω2
u(t) � sin(ωt). (64)

/e exact solutions [27] to this problem are

u(t) �
2ω + 1
2ω2 sin(ωt) +

2ω − t

2ω
cos(ωt), (65a)

v(t) �
t − 2ω

2
sin(ωt) + cos(ωt), (65b)

a(t) �
1 − 2ω

2
sin(ωt) + ω

t − 2ω
2

cos(ωt). (65c)

/e circular self-frequency ω was assigned a value of 2π.
/us, the period is T � 1 s. /e integration interval was
chosen to be TFin � 10T � 10 s. In the calculations, the step
size Δt was varied from 10− 1 s to 10− 4 s. /e plots in
Figures 7–12 show the curves of the maximum relative
absolute errors and average relative absolute errors in dis-
placement, velocity, and acceleration for the duration of the
simulation. /ese errors were computed as functions of Δt
(on a logarithmic scale) using the CQ-2x, CAA, and KR-α
methods.When ρ∞ ≠ 1, the CQ-2xmethod shows first-order
rates of convergence in displacement, velocity, and accel-
eration, identical to the KR-αmethod. When ρ∞ � 1, CQ-2x
shows second-order rates of convergence in displacement,
velocity, and acceleration, identical to the CAA method.

6.2.Example 2. /e purpose of this example is to validate the
controllable numerical dissipation and unconditional sta-
bility in case of stiffness hardening of the CQ-2x method. In
this example, the well-known unforced and undamped
Duffing oscillator [28] is considered. /e nonlinear dy-
namics equation is

a + S1u 1 + S2u
2

􏼐 􏼑 � 0, (66)

where S1 � 100 and S2 − 10. /e initial conditions are u0 �

1.5 and v0 � 0.

12 Shock and Vibration



Equation (66) represents a hardening elastic spring./is is
an example of a conservative system that maintains a constant
total energy E in its exact solutions. For equation (66),

E �
1
2
v
2

+
1
2
S1u

2
+
1
4
S1S2u

4
. (67)

To assess the time integration scheme, the percentage
error in terms of the energy is introduced [29]:

Er �
E − E0

E0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%, (68)

where E0 is the total energy at t � 0.
Equation (66) has an exact solution expressed in terms of

Jacobian elliptic functions [30]:

u(t) � u0cn(− 􏽢wt, k), (69)
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Figure 7: Convergence rate of CQ-2x assessed in terms of the
maximum relative displacement error.
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Figure 9: Convergence rate of CQ-2x assessed in terms of the
maximum relative velocity error.
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Figure 10: Convergence rate of CQ-2x assessed in terms of the
average relative velocity error.
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where

􏽢ω2
� S1 1 + S2u

2
0􏼐 􏼑,

k
2

�
S2u

2
0

2 1 + S2u
2
0􏼐 􏼑

.

(70)

/e period T of this oscillator is equal to 0.15. /e exact
phase portrait is given in Figure 13. Also, shown in

Figures 14–22 are the phase portraits of numerical results
obtained using different integration schemes with the same
time step size of Δt � T/20 over a time duration of 100 T.
/e maximum values of the percentage errors of the nine
considered algorithms over this time duration of 100 T are
summarized in Table 1 for various time step sizes. When
Δt � (1/25)T, CQ-2x (ρ∞ � 1) has an error of 6.06%,
whereas the KR-α method has an error of at least 99.63%. It
can be seen from Figures 14–17 that ρ∞ is smaller, the
numerical damping is bigger, and the undamped Duffing
oscillator decays faster. To validate the unconditional sta-
bility of CQ-2x in the stiffness hardening case, a time step
size of Δt � (1/2)T over a time duration of 100 T is con-
sidered. Figures 23–31 show the phase portraits of the nu-
merical results obtained using the nine integration schemes
with the same time step size of Δt � (1/2)T over a time
duration of 100 T. It is meaningless to study an algorithm’s
accuracy when Δt � (1/2)T, but it is useful to explore its
stability. Figures 23–26 show that even when Δt � (1/2)T,
CQ-2x (ρ∞ � 1, 0.8, 0.5, 0) is still stable. By contrast, the KR-
α method is robustly stable only when ρ∞ � 0, as seen in
Figure 30; when ρ∞ � 1, 0.8, and 0.5, the KR-α method
becomes evidently unstable, as seen in Figures 27–29. e CAA
method also exhibits some instability, as seen in Figure 31
(for the CAA method, the iteration termination criterion is
that the absolute value of the error between the displace-
ments in the previous and current iterations is less than
10− 6).

/e time consumptions of the different algorithms with
different time steps over the time duration of 100 T are listed
in Table 2. For the same time step size, the noniterative
algorithms (CQ-2x and KR-α) are more efficient than the
implicit algorithm (CAA). In addition, the CQ-2xmethod is
more efficient than the KR-αmethod for the same time step
size. For example, when Δt � (1/25)T, the time consump-
tion of CQ-2x is at most 0.0015 seconds, whereas the KR-α
method requires at least 0.0048 seconds.

6.3.Example 3. /e purpose of this example is to validate the
efficiency of the CQ-2x method compared with the implicit
method and KR − α method. In this example, the forced
vibration response of a n-DOF (n� 200, 500, 1000, 2000, and
4000) spring-mass system was considered, as shown in
Figure 32. /e structural properties of this system are as-
sumed to be mi � 100 kg and ki � 107[1 − (ui − ui− 1)

2]N/m,
in which i � 1, 2, . . . , n. /is system is subjected to a ground
acceleration of 10 sin(πt). /e highest natural frequency is
632.4 rad/s [31]. According to the highest natural frequency,
a time step duration of Δt � 0.001 s is obtained from
Newmark’s average accelerationmethod and is selected to be
the exact solution. /e responses of displacement and ve-
locity versus time of the 200thDOFwhenN� 200 are plotted
in Figures 33 and 34 . /e analysis is accomplished by
considering the time step duration equal to 0.02 s. /e
maximum displacement and velocity error ratios of the
200th DOF when n� 200 are listed in Table 3. It can be seen
that the accuracy of the CQ-2x method is sufficient. /e
maximum error ratio here is defined by the function of max
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Figure 11: Convergence rate of CQ-2x assessed in terms of the
maximum relative acceleration error.
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Figure 12: Convergence rate of CQ-2x assessed in terms of the
average relative acceleration error.
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(abs(calculated value-exact value)))/max(abs(exact value)),
where max�maximum and abs� absolute. Importantly,
without the need for iteration calculations, CQ-2x algo-
rithms have approximately less than half the computational
time consumption compared to that consumed by the im-
plicit algorithm CAA. With solving the inverse matrix only
once for each time step, CQ-2x algorithms are more efficient
than the noniterative KR − α method in which solving the
inverse matrix twice for each time step is needed, as listed in
Table 4.

6.4.Example4. /e purpose of this example is to validate the
efficiency of the CQ-2x method in case of Vehicle-Bridge
Coupled Vibration where the contact nonlinearity exists. In

this example, a simple beam of span length� 25m is sub-
jected to a moving spring mass [32] (as shown in Figure 35).
/e following data are adopted: Young’s modulus
E� 2.87Gpa, ρ � 0.2, moment of inertia I � 2.90m4, mass
per unit length m � 2303 kg/m, suspended mass
Mv � 5750 kg, suspension stiffness kv � 1595 kN/m, and
speed v � 90 km/h. /e frequency of vibration computed of
the spring mass is ωv � 16.66 rad/s. /e frequencies of vi-
bration computed of the bridge are ω1 � 30.02 rad
/s, ω2 � 120.08 rad/s, ω3 � 270.19 rad/s, ω4 � 480.34 rad/s,
ω5 � 750.58 rad/s, andω6 � 1081.0 rad/s. /e maximum
frequency of vibration computed of the bridge is
ωmax � 95432 rad/s. According to stability requirement of
the CDM, the widest time step satisfying CDM’s stability is
2/ωmax � 2.0957 × 10− 5s. A time step duration of Δt � 2 ×
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Figure 13: Exact solution for the phase portrait of the hardening
spring.
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Figure 14: Phase portrait of the hardening spring calculated using
CQ-2x (ρ∞ � 1) when Δt � T/20.
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Figure 15: Phase portrait of the hardening spring calculated using
CQ-2x (ρ∞ � 0.8) when Δt � T/20.
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Figure 16: Phase portrait of the hardening spring calculated using
CQ-2x (ρ∞ � 0.5) when Δt � T/20.
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10− 5 s is obtained for the CDM, and the calculation result is
selected to be the exact solution, while with unconditional
stability, the time step duration of CQ2x(ρ∞ � 1), KR-
α(ρ∞ � 1), and CAA is only determined by the require-
ments of the calculation accuracy; here, Δt � 0.001s. /e
midpoint vertical deflection of the beam and deflection of
the spring mass versus time are plotted in Figures 36 and 37.
/e maximum displacement error ratios (defined as that in
Example 3) of the midpoint vertical deflection of the beam
and the deflection of the spring mass are listed in Table 5. It
can be seen that the accuracy of the CQ-2x method is
sufficient. /e efficiency of the CDM (Δt � 0.00002 s),

CQ2x(ρ∞ � 1), KR-α(ρ∞ � 1), and CAA (Δt � 0.001 s) is
compared. /e average time consumption of the four al-
gorithms in which every algorithm had been performed five
times is listed in Table 6. In this example, limited by its
conditional stability, the CDMhas to be performed with very
small Δt � 0.00002 s, which leads to its efficiency much
lower than the other three algorithms. Without the need for
iteration calculations, CQ-2x and KR-α algorithms show
higher efficiency than that of the implicit algorithm CAA
although the maximum number of iteration in each time
step of CAA is only 3. /e CQ-2x algorithm are more ef-
ficient than the noniterative KR − α algorithm since the
computation amount in each time step of CQ-2x is much
less than that of KR-α.
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Figure 17: Phase portrait of the hardening spring calculated using
CQ-2x (ρ∞ � 0) when Δt � T/20.
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Figure 18: Phase portrait of the hardening spring calculated using
the KR-α method (ρ∞ � 1) when Δt � T/20.
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Figure 19: Phase portrait of the hardening spring calculated using
the KR-α method (ρ∞ � 0.8) when Δt � T/20.
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Figure 20: Phase portrait of the hardening spring calculated using
the KR-α method (ρ∞ � 0.5) when Δt � T/20.
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Figure 21: Phase portrait of the hardening spring calculated using the KR-α method (ρ∞ � 0) when Δt � T/20.
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Figure 22: Phase portrait of the hardening spring calculated using the CAA method when Δt � T/20.

Table 1: Maximum percentage errors of the total energy over a time duration of 100 T for the hardening spring.

CQ-2x KR-α
CAA

Δt ρ∞ � 1 ρ∞ � 0.8 ρ∞ � 0.5 ρ∞ � 0 ρ∞ � 1 ρ∞ � 0.8 ρ∞ � 0.5 ρ∞ � 0

T/1000 0.00 19.88 45.54 77.22 71.63 68.55 60.60 1.31 0.00
T/200 0.09 60.80 87.93 98.24 96.00 95.22 92.97 6.83 0.04
T/100 0.36 79.76 96.07 99.68 99.32 98.25 97.36 15.89 0.17
T/50 1.47 92.13 99.08 99.97 158.39 99.35 99.04 37.14 0.66
T/25 6.06 97.73 99.87 100.00 105670.02 99.74 99.63 400.59 2.62
T/20 9.51 98.60 99.94 100.00 ∞ 99.81 99.73 700089.87 4.07
T/15 16.77 99.28 99.98 100.00 ∞ 99.87 99.81 219047.46 7.13
T/2 Finite Finite Finite Finite ∞ ∞ ∞ finite ∞
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Figure 23: Phase portrait of the hardening spring calculated using CQ-2x (ρ∞ � 1) when Δt � (1/2)T.
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Figure 24: Phase portrait of the hardening spring calculated using CQ-2x (ρ∞ � 0.8) when Δt � (1/2)T.
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Figure 25: Phase portrait of the hardening spring calculated using CQ-2x (ρ∞ � 0.5) when Δt � (1/2)T.
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Figure 26: Phase portrait of the hardening spring calculated using CQ-2x (ρ∞ � 0) when Δt � (1/2)T.
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Figure 27: Phase portrait of the hardening spring calculated using the KR-α method (ρ∞ � 1) when Δt � (1/2)T.
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Figure 28: Phase portrait of the hardening spring calculated using the KR-method (ρ∞ � 0.8) when Δt � (1/2)T.
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Figure 29: Phase portrait of the hardening spring calculated using the KR-α method (ρ∞ � 0.5) when Δt � (1/2)T.
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Figure 30: Phase portrait of the hardening spring calculated using the KR-α method (ρ∞ � 0) when Δt � (1/2)T.

−1.5

−1

−0.5

0

0.5

1

1.5

Ve
lo
ci
ty

−1 −0.5 0 0.5 1 1.5−1.5
Displacement

×1015

×1011

CAA

Figure 31: Phase portrait of the hardening spring calculated using the CAA method when Δt � (1/2)T.
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Table 2: Time consumptions of the different algorithms for solving the Duffing vibration problem in Example 2 over a time duration of 100
T (unit: second).

CQ-2x KR-α
CAA

Δt ρ∞ � 1 ρ∞ � 0.8 ρ∞ � 0.5 ρ∞ � 0 ρ∞ � 1 ρ∞ � 0.8 ρ∞ � 0.5 ρ∞ � 0

T/1000 0.0590 0.0090 0.0180 0.0174 0.3305 0.1871 0.1936 0.1947 1.1631
T/200 0.0115 0.0018 0.0037 0.0036 0.0686 0.0405 0.0474 0.0431 0.2700
T/100 0.0060 0.0009 0.0020 0.0019 0.0331 0.0199 0.0198 0.0241 0.1386
T/50 0.0032 0.0004 0.0009 0.0009 0.0166 0.0095 0.0104 0.0125 0.0835
T/25 0.0015 0.0002 0.0005 0.0005 0.0079 0.0048 0.0048 0.0080 0.0511
T/20 0.0015 0.0002 0.0004 0.0004 0.0066 0.0040 0.0039 0.0068 0.0426
T/15 0.0009 0.0001 0.0003 0.0003 0.0058 0.0027 0.0029 0.0051 0.0386

.......

k1 k2

m1 m2

u1

kn

mn

unu2

Figure 32: Schematic plot of the n-DOF spring-mass system.
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Figure 33: Displacement responses of the 200th DOF when n � 200.
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Figure 34: Velocity responses of the 200th DOF when n � 200.

Table 3: Maximum displacement and velocity responses’ errors of the 200th DOF when n � 200.

CAA
CQ-2x KR-α

ρ∞ � 1 ρ∞ � 0.8 ρ∞ � 1 ρ∞ � 0.8

Displacement 0.00331 0.00284 0.03117 0.00283 0.00289
Velocity 0.00603 0.00553 0.03454 0.02955 0.03537

Table 4: Time consumptions of the different algorithms for solving the n-DOF system in Example 3 (unit: second).

CAA
CQ-2x KR-α

ρ∞ � 1 ρ∞ � 0.8 ρ∞ � 1 ρ∞ � 0.8

n � 200 5.37478 1.63362 1.51627 3.75233 3.54338
n � 500 39.17923 14.80797 11.12231 31.67168 23.96452
n � 1000 246.31789 86.08239 91.89233 182.75176 183.34749
n � 2000 2045.64400 318.19379 492.85635 893.82694 1094.05923
n � 4000 14992.598 4811.754 6220.651 12205.040 14868.966

L

Mv
uv

ubkv

Figure 35: Beam with the moving spring mass.

22 Shock and Vibration



CDM (dt = 0.00002)
CQ2x

KR-α
CAA

–2.5

–2

–1.5

–1

–0.5

0

0.5

D
isp

la
ce

m
en

t (
m

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Time (s)

×10–3

Figure 36: Deflection of the spring mass.
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Figure 37: Midpoint vertical deflection of the beam.

Table 5: Maximum deflection error ratios in Example 4.

CAA CQ-2x (ρ∞ � 1) KR-α (ρ∞ � 1)

Midpoint of beam 0.0672 0.0177 0.0061
Springmass 0.0354 0.0303 0.0051

Table 6: Time consumption of the different algorithms for solving the beam with the moving spring mass in Example 4 (unit: second).

CDM CAA CQ-2x (ρ∞ � 1) KR-α (ρ∞ � 1)

1153.89 1.40938 0.51252 1.21876
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7. Conclusions

A novel idea based on dimensional analysis for designing
noniterative displacement algorithms to be applied in the
analysis of nonlinear structural dynamics problems has been
introduced and proven to be effective. Originating from only
an objective function, a one-parameter family of two-step
unconditionally stable noniterative displacement algorithms
with controllable numerical energy dissipation has been
developed. Analysis results show that the proposed CQ-2x
method has unconditional stability in the cases of both
stiffness hardening and softening. With the advantages of
noniterative formulations of both displacement and velocity,
controllable numerical dissipation, the use of one solver per
time step, and no overshoot in either displacement or ve-
locity, CQ-2x is expected to serve as a competitive dis-
placement method for solving nonlinear structural dynamics
problems.

Appendix

A. Derivation of the Preliminary NDA Form

When ut+Δt, m, and Δt are chosen as the basic dimensional
units, equation (5) can be expressed in terms of dimen-
sionless quantities as follows:

ut+2Δt
ut+Δt

�
ut+2Δt
ut+Δt

1,
ut

ut+Δt
,
ft+ΔtΔt

2

mut+Δt
, 1,

ct+ΔtΔt
m

,
kt+ΔtΔt

2

m
, 1􏼠 􏼡.

(A.1)

To construct the function ut+2Δt/ut+Δt, a linear combi-
nation of ut+2Δt/ut+Δt, 1, ut/ut+Δt, and (ft+ΔtΔt2)/mut+Δt can
be used:

r1
ut+2Δt
ut+Δt

� r2 + r3
ut

ut+Δt
+ r4

ft+ΔtΔt
2

mut+Δt
, (A.2)

where ri (i � 1, . . . , 4) are coefficients. /e effects of the
dimensionless arguments ct+ΔtΔt/m and kt+ΔtΔt2/m, which
represent the structure’s material properties, on the com-
puted displacements can be expressed by replacing the
coefficients ri (i � 1, 2, 3) with linear combinations of
ct+ΔtΔt/m, kt+ΔtΔt2/m, and a constant term 1 as follows:

r1 � l1 + l2
ct+ΔtΔt

m
+ l3

kt+ΔtΔt
2

m
, (A.3a)

r2 � l4 + l5
ct+ΔtΔt

m
+ l6

kt+ΔtΔt
2

m
, (A.3b)

r3 � l7 + l8
ct+ΔtΔt

m
+ l9

kt+ΔtΔt
2

m
, (A.3c)

where li (i � 1, . . . , 9) are coefficients. Substituting equations
(A.3a)–(A.3c) into equation (A.2) yields

l1 + l2
ct+ΔtΔt

m
+ l3

kt+ΔtΔt
2

m
􏼠 􏼡

ut+2Δt
ut+Δt

� l4 + l5
ct+ΔtΔt

m
+ l6

kt+ΔtΔt
2

m
􏼠 􏼡

+ l7 + l8
ct+ΔtΔt

m
+ l9

kt+ΔtΔt
2

m
􏼠 􏼡

ut

ut+Δt
+ l10

ft+ΔtΔt
2

mut+Δt
,

(A.4)

where l10 � r4. Equation (A.4) can be simplified by multi-
plying by mut+Δt as follows:

l1m + l2cΔt + l3kt+ΔtΔt
2

􏼐 􏼑ut+2Δt � l4m + l5cΔt + l6kt+ΔtΔt
2

􏼐 􏼑ut+Δt

+ l7m + l8cΔt + l9kt+ΔtΔt
2

􏼐 􏼑ut + l10ft+ΔtΔt
2
.

(A.5)

To reduce the number of undetermined coefficients li,
equation (A.5) can be further simplified by dividing both
sides by l1:

m + b1cΔt + b2kt+ΔtΔt
2

􏼐 􏼑ut+2Δt � b3m + b4cΔt + b5kt+ΔtΔt
2

􏼐 􏼑ut+Δt

+ b6m + b7cΔt + b8kt+ΔtΔt
2

􏼐 􏼑ut + b9ft+ΔtΔt
2
,

(A.6)
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where bi � (li+1/l1) (i � 1, . . . , 9) are undetermined
coefficients.

Equation (A.6) is the preliminary NDA form of the CQ-
2x method.

B. Expressions for e0, e1, e2, e3, e4, and e5

e0 � 1 − b3 − b6( 􏼁mu(t), (B.1a)

e1 � 2 − b3( 􏼁mv(t) + b1 − b4 − b7( 􏼁c(t + Δt)u(t), (B.1b)

e2 � 2 − 0.5b3 − b9( 􏼁ma(t) + 2b1 − b4 − b9( 􏼁c(t + Δt)v(t) + b2 − b5 − b8 − b9( 􏼁k(t + Δt)u(t), (B.1c)

e3 �
4
3

−
1
6
b3 − b9􏼒 􏼓m _a(t) + 2b1 − 0.5b4 − b9( 􏼁c(t + Δt)a(t) + 2b2 − b5 − b9( 􏼁k(t + Δt)v(t), (B.1d)

e4 �
2
3

−
1
24

b3 −
1
2
b9􏼒 􏼓m€a(t) +

4
3
b1 −

1
6
b4 −

1
2
b9􏼒 􏼓c(t + Δt) _a(t) + 2b2 −

1
2
b5 −

1
2
b9􏼒 􏼓k(t + Δt)a(t), (B.1e)

e5 �
4
15

−
1
120

b3 −
1
6
b9􏼒 􏼓ma

ṫ
(t) +

2
3
b1 −

1
24

b4 −
1
6
b9􏼒 􏼓c(t + Δt)€a(t) +

4
3
b2 −

1
6
b5 −

1
6
b9􏼒 􏼓k(t + Δt) _a(t). (B.1f)

/e targets of computation may be either buildings or
bridges, and the dynamic responses may be forced by wind
or an earthquake; consequently, the values of m, c(t + Δt),
and k(t + Δt) and the forms of u(t), v(t), _a(t), €a(t), and a

ṫ
(t) in

the algorithm are arbitrary. /us, by referring to equations
(B.1a)–(B.1f), the following can be derived:

e0 � 0⟶ 1 − b3 − b6 � 0, (B.2a)

e1 � 0⟶ 2 − b3 � 0, b1 − b4 − b7 � 0, (B.2b)

e2 � 0⟶ 2 − 0.5b3 − b9 � 0,

2b1 − b4 − b9 � 0,

b2 − b5 − b8 − b9 � 0,

(B.2c)

e3 � 0⟶
4
3

−
1
6
b3 − b9 � 0,

2b1 − 0.5b4 − b9 � 0,

2b2 − b5 − b9 � 0,

(B.2d)

e4 � 0⟶
2
3

−
1
24

b3 −
1
2
b9 � 0,

4
3
b1 −

1
6
b4 −

1
2
b9 � 0,

2b2 −
1
2
b5 −

1
2
b9 � 0,

(B.2e)

e5 � 0⟶
4
15

−
1
120

b3 −
1
6
b9 � 0,

2
3
b1 −

1
24

b4 −
1
6
b9 � 0,

4
3
b2 −

1
6
b5 −

1
6
b9 � 0.

(B.2f)

C. Derivation of the NDA
Stability Requirements

/e characteristic equation of the amplification matrix A is
given by

|A − λI| � λ2 − 2A1λ + A2 � 0, (C1)

where λ is the root of the characteristic equation of A and

A1 �
A11 + A22

2
, (C2a)

A2 � A11A22 − A12A21. (C2b)

At the boundary line of the domain of NDA stability, the
following holds:

ρ(A) � 1, (C3)

where ρ(A) is the spectral radius of the amplification matrix
A.

Equation (C3) being satisfied means that

|λ|max � 1. (C4)

For a complex-valued λ, equation (C5) is satisfied only
when

λ � e
iφ

, (C5)

where i �
���
− 1

√
and φ (φ ∈ [0, 2π]) is the argument of λ.

Substituting equation (C5) into equation (C1) yields

e
i2φ

− 2A1e
iφ

+ A2 � 0. (C6)

Considering eiφ � cosφ + i sinφ, cos 2φ � 2 cos2 φ − 1,
and sin 2φ � 2 sinφ cosφ, equation (C6) can be rewritten as
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2 cosφ cosφ − A1( 􏼁 + A2 − 1( 􏼁 + i 2 sinφ cosφ − A1( 􏼁( 􏼁 � 0.

(C7)

Equation (C7) is satisfied only when

2 cosφ cosφ − A1( 􏼁 + A2 − 1 � 0, (C8a)

2 sinφ cosφ − A1( 􏼁 � 0. (C8b)

/e boundary line of the NDA stability domain can be
determined from equations (C8a) and (C8b) when
φ ∈ [0, 2π]. It can be derived that when 0<φ< π equations
(C8a) and (C8b)are satisfied when

A1 � cosφ,

A2 � 1.
(C9)

When φ � 0 and φ � 2π, equations (C8a) and (C8b) are
satisfied when

1 − 2A1 + A2 � 0. (C10)

When φ � π, equations (C8a) and (C8b) are satisfied
when

1 + 2A1 + A2 � 0. (C11)

/e boundary line of the NDA stability domain is thus
composed of three lines described by equations (C9), (C10),
and (C11) in the A1 − A2 plane, as shown in Figure 1.
Because ρ(A) is a continuous function of A1 and A2, when
A1 � A2 � 0 and ρ(A) � 0< 1, the domain of NDA stability
is the inner part of the triangle shown in Figure 1 and can be
expressed as

% − 1≤A2 ≤ 1, (C12a)

−
1
2

1 + A2( 􏼁≤A1 ≤
1
2

1 + A2( 􏼁. (C12b)

D. Dissipation and Dispersion

/e characteristic values of λ in equation (C1) are

λ1,2 � A1 ±
�������

A2 − A
2
1

􏽱

i, whenA2 ≥A
2
1, (D1a)

λ1,2 � A1 ±
�������

A
2
1 − A2

􏽱

, whenA2 ≤A
2
1. (D1b)

/e spectral radius of the amplification matrix A is

%ρ(A) �
���
A2

􏽰
, whenA2 ≥A

2
1, (D2a)

ρ(A) � max A1 ±
�������

A
2
1 − A2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, whenA2 ≤A

2
1. (D2b)

When A2 ≥A2
1, equation (D1a) can be rewritten as [18]

λ1,2 � σ ± εi � A1 ±
�������

A2 − A
2
1

􏽱

i � exp Ω − ξ ±
�����

1 − ξ
2

􏽱

i􏼠 􏼡􏼢 􏼣,

(D3)

where the numerical circular frequency Ω is given by

Ω � ωnΔt �
tan− 1

(ε/σ)
�����

1 − ξ
2

􏽱 �
tan− 1

�������

A2 − A
2
1

􏽱

/A1􏼒 􏼓
�����

1 − ξ
2

􏽱 , (D4)

and the numerical damping ratio ξ can be written as

ξ � −
ln σ2 + ε2􏼐 􏼑

2Ω
� −

ln A2( 􏼁

2Ω
. (D5)

/e relative period error Pe is written as

Pe �
Ω
Ω

− 1. (D6)
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