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Rolling bearings are important parts of mechanical equipment. However, the early failures of the bearing are usually masked by
heavy noise. This brings about difficulties to the extraction of its fault features. Therefore, there is a need to develop a reliable
method for early fault detection of the bearing. Considering this issue, a novel fault diagnosis method using the improved wavelet
threshold denoising and fast spectral correlation (Fast-SC) is proposed. First, to solve the discontinuity of the hard threshold
function and avoid the constant deviation triggered by the soft threshold function, a piecewise continuous threshold function is
proposed by using a new threshold selection rule to denoise the original signal. In the new threshold function, the adjuster « is
introduced to improve the traditional wavelet denoising algorithm, so as to enhance the signal-to-noise ratio (SNR) of the original
signal more effectively. Then, the denoised signal is analysed by Fast-SC to identify the rolling bearing fault features. Finally,
simulation analysis and experimental data demonstrate that the proposed approach is effective for rolling bearing fault detection

compared with Fast-SC and the combined method based on traditional wavelet threshold and Fast-SC.

1. Introduction

Rolling bearings are widely used in rotating machinery.
However, they are also the most susceptible to be damaged in
mechanical systems. As one of the most important fault
sources of mechanical equipment, any fault of the bearing will
seriously affect the performance of the entire machine. If the
fault cannot be discovered and diagnosed in time, it will cause
serious personal injury and unnecessary economic loss [1-5].
Therefore, monitoring the running condition of the rolling
bearing and finding out its early failure in time is of great
significance to the safety of its operation. In recent years, more
and more approaches have been raised to detect the failures of
rolling bearings, including vibration, acoustic emission,
sound, temperature, and wear debris analyses [6-10]. Among
them, vibration analysis can reflect the dynamic behavior of
rolling bearing systems availably and contains abundant fault
information, so it has been widely used.

Currently, numerous typical signal processing methods
are used for fault diagnosis of rolling bearings. Although
these methods have been proven to be effective for rolling
bearing defect detection, they still have inherent limitations.
For example, Rajiv and Peng [11] proposed a fault diagnosis
method for detecting rotor faults by using STFT. Although
STFT has the advantages of simple calculation method, easy
implementation, and no cross-term interference, it has the
defects of high redundancy, limited time-frequency aggre-
gation, and lack of adaptability. Asr et al. [12] put forward a
feature extraction method using EMD. The extracted fea-
tures are input into non-naive Bayesian classifier to realize
rotating mechanism fault diagnosis. However, the end effect
and modal aliasing of EMD may cause the IMF to lose its
specific physical significance. Li et al. [13] put forward a
method for extracting nonstationary vibration feature of
gearboxes based on the sparse decomposition. Sparse de-
composition has better signal decomposition performance,
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but it depends on the design and decomposition algorithm
of the atomic library. Li et al. [14] proposed a fault diagnosis
method using time-delay feedback monostable stochastic
resonance (SR). The SR is an effective tool for extracting
transient features, but its detection capability is limited
because its system parameters are difficult to determine. Li
et al. [15] used SVD to acquire the fault feature of bearings.
Although SVD is an effective noise reduction method, its
effectiveness cannot be maintained when the measured
signal has a low signal-to-noise ratio (SNR).

In recent years, spectral correlation (SC) has played a
strong part in the extraction of fault features of rotating
machinery. It simultaneously displays the modulations and
carriers of a signal in the form of a bispectral map. SC is a
prime tool for second-order cyclostationary analysis, so it
has received extensive attention in the field of rotating
machinery fault diagnosis [16-18]. Liu and Gryllias [19] put
forward a semisupervised support vector data description
fault detection method using cyclic spectrum analysis and
verified the feasibility of the method. Liu et al. [20] used
nonlinear spectral correlation to detect fatigue cracks under
noisy environments. The results prove that the sensitivity of
nonlinear spectral correlation to fatigue cracks is higher than
the classical nonlinear coefficient. Although the capabilities
of SC in condition monitoring have been confirmed in some
research works, in some cases, the expensive computational
costs of SC limit its application. Fast spectral correlation
(Fast-SC) is a new spectral correlation estimation means
proposed by Antoni et al. [21]. This method not only retains
the advantage of fast calculation speed of SC but also
overcomes the defect of expensive calculation costs.
Therefore, Fast-SC has achieved good results in the fault
diagnosis of rotating machinery. Li et al. [22] used sparse
code shrinkage denoising and Fast-SC to detect rolling
bearing faults. The results prove that this method has ac-
quired ideal results in the detection of rolling bearing faults.
Tang and Tian [23] proposed a rolling bearings compound
fault diagnosis method using singular negentropy difference
spectrum and integrated Fast-SC. The results show that this
method is very effective for the separation of rolling bearing
composite faults. But the fault signals of rolling bearings
usually contain strong noise. It is found through research
that the presence of noise will seriously interfere with the
analysis effect of Fast-SC. Wavelet transform (WT) is widely
applied in signal processing. WT is suitable for disposing
nonstationary and nonlinear signals because of its charac-
teristics such as low entropy, multiresolution, and flexibility
of base selection. Among them, the wavelet hard and soft
threshold denoising method proposed by Donoho and
Johnstone [24] in 1994 has been widely used due to its small
amount of calculation and easy implementation. However,
due to the discontinuity of the hard threshold function and
the constant deviation caused by the soft threshold method,
the traditional threshold function cannot obtain ideal effects
in signal denoising. Therefore, selecting the appropriate
threshold function is one of the key problems for wavelet
threshold denoising algorithm. In this paper, a new im-
proved threshold function is proposed to improve the de-
ficiency of traditional threshold function, and a regulator « is
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introduced to change the shape of the threshold curve by
adjusting the value of «, which makes the threshold pro-
cessing of wavelet coefficient more flexible.

Considering the above problems, this paper presents a
novel time-frequency analysis method combining im-
proved wavelet threshold denoising and Fast-SC for
rolling bearing fault diagnosis. First, the improved wavelet
threshold denoising algorithm is applied to eliminate the
noise component of the original signal and improve the
SNR of the original signal. Then Fast-SC analysis is de-
voted to the denoised signal to enhance the periodic
component of the signal and accurately extract the fault
characteristic frequency of the bearing. Finally, the reli-
ability of this approach is verified by simulation and
experimental analysis. Compared with the Fast-SC and
the combined method using traditional wavelet threshold
and Fast-SC, the proposed approach can accurately detect
bearing faults.

This paper is organized as follows: In Section 2, the
detailed implementation process of the proposed approach
is provided. Section 3 introduces the basic theory of im-
proved wavelet threshold denoising algorithm. The principle
of the Fast-SC is proposed in Section 4. In Section 5, this
method is confirmed by simulation analysis. In Section 6, a
case of the outer race fault of the motor rolling bearing is
used to evaluate this method. Finally, conclusions are given
in Section 7.

2. Algorithmic Flow of the Improved Wavelet
Threshold Denoising and Fast-SC

Motivated by the advantages of improved wavelet threshold
denoising and Fast-SC, this paper proposes a fault diagnosis
method using improved wavelet threshold denoising and
Fast-SC for rolling bearings. The structural framework of
this approach is shown in Figure 1.

3. Improved Wavelet Threshold Denoising

3.1. The Principle of Wavelet Threshold Denoising. In actual
engineering, the measured signals are usually mixed with
different degrees of noise. Broadly speaking, a signal model
with noise can be expressed as

s(t) = f (1) +n(), (1

where s (t) is the original signal, f (¢) is the useful signal, and
n(t) is random noise.

In general, the useful signal is chiefly distributed in the
region of the low frequency, and the high-frequency area is
mainly distributed with noise. The purpose of wavelet
denoising is to suppress #(t) and reproduce f (t). Therefore,
the principle of wavelet threshold denoising is to select a
suitable threshold to process the wavelet coeflicients; the
wavelet coefficients below the threshold are set to 0, while
those above the threshold are retained. Finally, the retained
wavelet coefficients are used to reconstruct the denoised
signal. The algorithm mainly consists of three steps [25]. The
specific process is shown in Figure 2.
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F1GURE 2: The flowchart of wavelet threshold denoising algorithm.

(1) The discrete wavelet base is used to decompose the
signal and analyze the signal features of each layer to
obtain approximation coefficients and detail
coefficients

(2) The detail coefficients are disposed by using
threshold function and applicable threshold

(3) The approximate coefficients and the modified detail
coeflicients are used to reconstruct the signal

3.2. Wavelet Threshold. Wavelet threshold denoising needs
to set a threshold; the ideal threshold can remove the noise
component and recover the useful information effectively.
At present, the unified threshold proposed by Donoho et al.
[23, 24] has been broadly used, as shown in the following
equation:

A=0V21In N, (2)

where N is the length of signal and ¢ is the standard de-
viation of noise. In engineering applications, the noise
standard deviation is generally calculated by the following
equation:

median(]‘Wl,kl)

0.6745

, (3)
where %), is the original wavelet coefficient and
median ( * ) is the intermediate value function.

The noise energy will decrease as the decomposition
scale increases, so the threshold should also decrease with
the increase of the decomposition scale. At the same time,
the noise standard deviation of the wavelet coefficients of
each layer should be estimated, respectively. The stratifi-
cation threshold is applied to process the wavelet coeflicients
of each layer, and the equation is as follows:

~ 0;1/2 In N;

b= TG
(4)

~ median(|"%/i’k|)
i 0.6745

>

where i is the number of decomposition layers and N; is the
length of the wavelet coefficients of the i-th layer. A; will
decrease as the number of decomposed layers augments,
which can effectively retain the effective signal under high
decomposition layers.

3.3. Threshold Processing Function

3.3.1. Traditional Wavelet Threshold Function. The tradi-
tional threshold function is a classic denoising method
proposed by Donoho et al. [26] in 1994, which is widely used
in the field of signal denoising. The hard threshold function
and soft threshold function are defined as equations (5) and

(6).
(1) Hard threshold function:

_ Wi Wi 22
Wiy = ’ ’ (5)
’ 0, |7l <A

(2) Soft threshold function:

% B sgn(%i,k)(|Wi,k| - /\), |Wi,kl > )L,

- (6)
o [l <a

where %' is the original wavelet coefficient, %,”k is the
wavelet coeflicient after threshold processing, A is the
threshold, and sgn( ) is the sign function. The function
curves of the traditional threshold function are shown in
Figure 3.

Soft and hard threshold functions have been broadly
applied in practical research fields, but these two traditional
algorithms still have some disadvantages. In the hard
threshold algorithm, %';; is discontinuous at |%/;;| = A.
This discontinuity easily causes the signal to produce
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F1GURE 3: Traditional wavelet threshold function. (a) Hard threshold function. (b) Soft threshold function.

pseudo-Gibbs phenomenon, which makes the reconstructed
signal oscillate and not smooth enough. Although the soft
threshold function improves the discontinuity of the hard
threshold function and ensures the smoothness of the
processed signal, the constant deviation between 7;; and
W', may cause distortion of the reconstructed signal, which
will directly affect the degree of approximation between the
reconstructed signal and the original signal.

3.3.2. Improved Wavelet Threshold Function. For the defects
of soft and hard threshold functions, this paper adopts the
idea of exponential smoothing approximation, combined
with the threshold function construction method in [27],
and proposes an improved threshold function. The math-
ematical expression is given in the following equation:

2A ) 17 2 ),

(7)

By analyzing the improved threshold function, the fol-
lowing characteristics can be obtained:

(1) It can be seen from equation (7) that the improved
threshold function %' is continuous at |7;;| = A,
which surmounts the shortcomings of the hard
threshold function.

(2) When |7';;| — oo, %i,k — Wiy, which over-
comes the constant deviation between %', and %',
in the soft threshold function.

(3) Parameter « is a regulator. When « = 0, equation (7)
is equivalent to equation (6), and the improved
threshold function is a soft threshold function. When
a —> 00, equation (7) is equivalent to equation (5),

and the improved threshold function is a hard
threshold function.

To more clearly observe the influence of the value of & on
the improved threshold function %', this paper particu-
larly selects A = 2 and then draws the improved threshold
function curves corresponding to different values of «, as
shown in Figure 4.

It can be seen from Figure 4 that when «a =0, the
improved threshold function is equal to the soft threshold
function. When « = 3, the improved threshold function is
basically equal to the hard threshold function. The im-
proved threshold function can be flexibly adjusted between
the hard threshold function and the soft threshold func-
tion. It not only combines the preponderances of hard and
soft threshold functions but also can flexibly select the
corresponding threshold function by adjusting the value of
« in the interval [0, 5] (a>5, the denoising effect is ba-
sically the same as the hard threshold function), so as to
obtain a better resolution than the traditional threshold
function.

4. Fast Spectral Correlation

The spectral correlation (SC) can be expressed as
sen=px(-5x(r+3)}h

where X (f) is the Fourier transform of the signal x(¢),
X*(f) is the conjugate of X(f), and «a is the cyclic
frequency.

The application of SC is limited due to its expensive
computing cost. Antoni et al. [20] put forward a fast esti-
mator of the SC using STFT. The principle is to perform
Fourier transform on the coeflicients of STFT and then
return a correlation quantity of the spectral correlation
characteristics scanned along the cycle frequency axis. The
definition of Fast-SC is as follows:
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P .
_ %onsx(“nf’p) Rw(O), (9)
ZP:O Rw (OC—pAf)

where S, (a, f; p) is the Fourier transform of the interactions
among the STFT coeflicients; « is the cyclic frequency; f is
the carrier frequency; A f is the carrier frequency resolution;
p is the integer that remains closest to «; R, is the squared
window spectrum.

The formula for spectral coherence is

el f) = o)
= VS (NS (f — o)

The exploitation of the Fast-SC realizes a simple and
practical implementation to reveal the cyclostationary fea-
tures in the condition monitoring signals.

Siast (“) f)

(10)

5. Simulation Analysis

To study the feasibility of this method, a simulation study
was performed to reveal the analysis results at a high noise
level. It is assumed that the simulated signal can be expressed
as follows [22]:

x(t) = |:MZ_1D(t - iT)] x[4e 7 sin(2mf, 1= 1) | + (o,
i=0
(11)

where M is the number of fault impulses; D represents the
single pulse intensity; T is the time interval between two
adjoining impulses; A represents the amplitude of fault
impulses; f, is the inherent frequency and ¢ is the damping
coefficient. The parameters of outer race fault model are
listed in Table 1. In addition, # (t) is random white noise. The
sampling frequency is 204,800 Hz, the number of sampling
points is 102,400, the SNR is equal to —20 dB, and the fault

5
TaBLE 1: Parameters of the outer race fault model.
M D T (s) A & f,(Hz)
30 1 1/100 3 0.1 3000

characteristic frequency is 100 Hz. Figure 5 displays the
waveform and spectrum of the simulated signal. It is difficult
to identify the fault of bearing from the spectrum, so further
analysis is essential.

In order to accurately obtain the fault characteristic
frequency of the bearing, this method is used to dispose the
simulated signal. Firstly, the simulated signal is denoised by
improved wavelet threshold denoising algorithm, and then
Fast-SC is performed on the denoised signal to detect the
fault characteristic frequency of the bearing. Figure 6 shows
the spectrum obtained by this method, which can effectively
identify the outer race fault characteristic frequency f, and
its harmonics (2f,, 3f,, 4f,)-

To prove the superiority of this method, the simulated
signal is dealt with Fast-SC, the combined method based on
traditional wavelet threshold and Fast-SC. The comparison
results acquired by the above three methods are shown in
Figures 7 to 8. Figure 7 displays the spectrum obtained by
directly performing Fast-SC on the simulated signal x (t).
From Figure 7, although f, can be identified, its harmonics
(2f4 3fo 4f,) cannot be identified due to the interference
of numerous noises. Figures 8(a) and 8(b), respectively,
show the analysis results of the soft threshold and the hard
threshold combined with Fast-SC. From Figures 8(a) and
8(b), only f, and its harmonic (2f,) can be detected. Its
harmonics (3f,, 4f,) are overwhelmed by background
noise. According to the comparison results, it is observed
that the combined method using improved wavelet
threshold denoising and Fast-SC is better than Fast-SC and
the combined method using traditional wavelet threshold
and Fast-SC.

6. Experiment Validation

To determine the reliability of the proposed method, it was
turther validated using the experimental platform shown in
Figure 9. The bearing test bench consists of an electric motor,
a coupling, an intermediate shaft, a support bearing, and an
electric brake. The measured signals were obtained through a
vibration sensor mounted vertically on the bearing housing
of the motor drive end with a sensitivity of 1.04mV/ms?. In
this experiment, one vibration sensor is fixed on the rolling
bearing seat of the motor drive end, and the other vibration
sensor is placed on the supporting rolling bearing seat. The
experimental bearing is shown in Figure 10. Its failure mode
is the weak fault of the outer race of the motor bearing. Data
were sampled at 20 kHz. The kinematical parameters of the
experiment bearing are listed in Table 2. According to
equation (12), the theoretical outer race fault characteristic
frequency of rolling bearing is calculated as 89.33 Hz.

fozgfa<1—%cos oc), (12)
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FIGURE 8: Results of the combined method using traditional wavelet threshold and Fast-SC. (a) Soft wavelet threshold and Fast-SC. (b) Hard
wavelet threshold and Fast-SC.

11(b) that the fault characteristic frequency f, is submerged
by strong noise. Similar to simulation analysis, four methods
are performed to deal with the measured signal. Firstly, the
measured signal is directly processed by Fast-SC, and the
result is shown in Figure 12. According to Figure 12, f, can

where D is pitch diameter, d is roller diameter, Z is number
of rollers, o is contact angle, and f, = 24.48 is shaft rotational
frequency.

Figure 11 displays the waveform of the measured signal
and its spectrum. It serves to show from Figures 11(a) and
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TaBLE 2: Kinematical parameters of the experimental bearings.
Pitch diameter D,, (mm) Ball number Contact angle 8
46.4 9 0

Bearing model Ball diameter d (mm)
620627 9.53
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FIGURE 11: Vibration signal of experimental bearing. (a) Waveform. (b) Spectrum.
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FIGURE 14: Results of the combined method using traditional wavelet threshold and Fast-SC. (a) Soft wavelet threshold and Fast-SC. (b)

Hard wavelet threshold and Fast-SC.

only be identified reluctantly, but its harmonics (2f,, 3 f,,
4f,) are submerged by noise. Next, this approach is
employed to process the measured signal. The improved
wavelet threshold denoising is firstly adopted to remove the
noise component of the measured signal, and then Fast-SC s
performed on the denoised signal to extract the related
characteristic frequency of the outer race fault of the bearing.
The result is displayed in Figure 13, it is observed from
Figure 13 that there are distinct peaks at f, and its har-
monics (2f,, 3f,, 4f,), and it can be concluded that the
bearing outer race is damaged.

To reflect the superiority of this method, the effects of the
combined method based on soft and hard thresholds with
Fast-SC are compared with it. Firstly, the soft and hard
wavelet thresholds are, respectively, used to denoise the
measured signal, and then the denoised signal is analyzed by
using Fast-SC. Figure 14 shows the analysis results, and it
can only be seen from Figure 14 that f, and its harmonic
(2f,) have obvious peaks. Compared with Figure 12, there is
no significant improvement, and the effect is not as good as
that of Figure 13. The above results prove that this method
can more effectively extract the fault features of bearings

compared with Fast-SC and the combined method using
traditional wavelet threshold and Fast-SC.

7. Conclusions

Aiming at the problem that the early fault features of rolling
bearings are difficult to be extracted, a fault diagnosis
method using the improved wavelet threshold denoising and
Fast-SC is proposed. First, the improved wavelet threshold
denoising is performed to denoise the original signal to
improve its SNR. Then, the denoised signal is analyzed by
Fast-SC to detect the fault characteristics of the bearing.
Through the simulation analysis and experimental verifi-
cation, the conclusions are as follows:

(1) The improved wavelet threshold denoising can ef-
fectively improve the weakness of Fast-SC which is
susceptible to strong background noise when pro-
cessing nonstationary signals and further highlight
the modulation component of the vibration signal.

(2) Fast-SC is used for residual noise suppression and
modulation component demodulation of the
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denoised signal, which can enhance the periodic
components in the signal and improve the accuracy
of fault feature extraction.

(3) The validity of this approach is proved by simulation
analysis and experimental data. The comparison
results show that the analysis effect of the proposed
method is better than Fast-SC and the combined
method based on traditional wavelet threshold and
Fast-SC, and it can more effectively improve the
accuracy of rolling bearing fault diagnosis.

(4) Although this method can clearly detect the outer
race fault of rolling bearings, there are still inter-
ference components. Therefore, how to precisely
identify the fault of rolling bearings under strong
background noise is the direction of future work. In
addition, whether the proposed method can solve
other problems, such as gear faults, is also one of the
future works.
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