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Under the variable working condition, the fault signal of the rolling bearing contains rich characteristic information. In view of the
problem that the traditional fault diagnosis method of the rolling bearing depends on the prior knowledge and expert experience
too much and the low recognition rate of some faults with the single signal, one method of rolling bearing fault diagnosis based on
information fusion under the variable working condition is proposed. Firstly, one test and multi-information acquisition system
of the rolling bearing is built. Secondly, the metro traction motor bearing nu216 is selected as the research object, and to
prefabricate the defects, the data of acoustic emission and vibration acceleration signals during the test of the bearing is acquired.
*en, the original signal is processed and extracted by the wavelet packet decomposition, and the normalized feature information
is fused by the convolution neural network. Finally, the two-dimensional convolution neural network model is established to
diagnose the bearing fault of the metro traction motor under different conditions. *e test results show that the intelligent fault
diagnosis method of the subway traction motor bearing based on information fusion under variable working conditions can
accurately identify the fault type of the bearing, while the load and speed change.When the neural network training set and the test
set cover the same working conditions, the accuracy can reach 100%.

1. Introduction

Operating under the harsh working conditions of high
temperature, alternating load, and long-time fatigue causes
cracks, pitting corrosion, and other local damage or defects
on the inner and outer ring raceways and rolling elements of
the metro traction motor bearings, and it can cause ab-
normal noise and vibration of the traction motor. As a key
component of the metro power system, once the traction
motor bearing fails, it will affect the smooth running of the
subway, abnormal operation, or even damage the equipment
which may cause serious economic losses and even casu-
alties. If the incipient and evolving faults of traction motor
bearing in operation can be identified accurately, timely, and
intelligently, it will be of great significance to the safe op-
eration of subway[1].

Traditional mechanical fault diagnosis is mainly classi-
fied by different pattern recognition methods based on

extracting shallow fault features through the signal pro-
cessing and diagnosis experience. For example, Amirat et al.
[2] used the overall empirical mode decomposition method
to study the fault diagnosis of the wind turbine bearing;
Wang et al. [3] studied the intelligent fault diagnosis of
support vector machine application. *ese studies have
achieved good diagnosis results, but need to master a lot of
signal processing technology and rich engineering practice
experience for fault feature extraction [4–6], and less con-
sideration is given to the influence of working conditions on
fault diagnosis results. It contains rich fault feature infor-
mation in the fault signal of the rolling bearing under design
conditions. In recent years, many scholars have studied the
feature extraction method of rolling bearing fault under the
off design condition. For example, Zhao et al. [7] proposed a
time-varying nonstationary fault feature extraction method
of the rolling bearing based on adaptive generalized de-
modulation transform; Gao et al. [8]realized rotational
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frequency estimation and feature extraction through time-
frequency extrusion and resampling order ratio analysis to
diagnose bearing fault; Zhou and He [9] proposed a rolling
bearing fault intelligent diagnosis model based on inde-
pendent feature selection and correlation vector machine for
variable load conditions. *ese methods of rolling bearing
fault diagnosis under different working conditions have
achieved good diagnosis effect, but mainly concentrated in
the signal of time-frequency analysis, processing, and feature
extraction.

In recent years, artificial intelligence has been widely
used in various fields. Many scholars have studied machine
learning methods. For example, Han et al. [10] proposed a
probability-based prediction method by considering prob-
abilistic feature parameters, to predict the service safety life
(SSL) of aeroengine turbine blades effectively. Fei et al. [11]
proposed an Enhanced Network Learning Method (ENLM)
by introducing Generalized Regression Neural Network
(GRNN) and Multipopulation Genetic Algorithm (MPGA)
into the Extreme Response Surface Method (ERSM), which
improved the modeling accuracy, simulation efficiency, and
the reliability of the flexible mechanism, and Fei and Bai [12]
proposed the WCFSE FSVM method based on wavelet
correlation feature scale entropy. Combining the advantages
of the Wavelet Correlation Feature Scale Entropy method
and Fuzzy Support Vector Machine method, it can analyze
the vibration signal of the aeroengine more accurately and
has high generalization ability and antinoise ability. By
learning the internal rules and representation levels of
sample data, repeatedly nesting feature transformation, and
automatically learning the internal characteristics of the
data, deep learning can actively mine the representative
diagnostic information hidden in massive original data and
can directly establish the accurate mapping relationship
between the running state and the original data. It largely
gets rid of the dependence on the experience of artificial
feature design and engineering diagnosis [13]. For example,
Lei et al. [14] used deep neural networks and big data to carry
out health monitoring of mechanical equipment; Jiang
Hongkai [15] and others used deep learning to carry out
intelligent diagnosis of aircraft faults. All these studies have
achieved good results. *e advantages of automatic learning
of internal characteristics of data make deep learning suc-
cessful in the field of rolling bearing fault diagnosis. For
example, Li Heng [16] used short-time Fourier transform,
Zhang et al. [17] used the multichannel sample construction
method, and Chen et al. [18] used the discrete wavelet
transform and convolution neural network, respectively, to
study rolling bearing fault based on deep learning. All of
these methods using the convolution neural network to
intelligently diagnose the fault of the rolling bearing have
achieved good results, but they are based on the test data
collected by Case Western Reserve University.

Information fusion technology is more and more widely
used in the field of rolling bearing fault diagnosis. For ex-
ample, Fei et al. [19] proposed the multifeature entropy
distance method for the process character analysis and di-
agnosis of rolling bearing faults by the integration of four
information entropies in time domain, frequency domain,

and time-frequency domain and two kinds of signals in-
cluding vibration signals and acoustic emission signals, and
it reveals the rolling bearing operating status more accu-
rately. However, the application of information fusion
technology in the field of rolling bearing fault diagnosis has
not yet formed a unified specification. To solve the problem
of the feature extraction by the time domain, frequency
domain or time-frequency domain analysis is too dependent
on prior knowledge and expert experience, and it is isolated
from the establishment of the model, which results in the
restriction of generalization ability for complex classification
problems such as bearing fault diagnosis of the metro
traction motor. In this paper, the convolution neural net-
work is used to fuse the acoustic emission and vibration
information characteristics during the bearing test of the
metro traction motor under different working conditions,
and the intelligent fault diagnosis method of the metro
traction motor bearing based on deep learning and infor-
mation fusion is studied under variable working conditions.

2. Bearing Test and Information Acquisition
System of the Metro Traction Motor

2.1. System Structure. *e principle of the rolling bearing
test and information acquisition system is shown in Figure 1,
which consists of a rolling bearing test bed, test bearing,
acoustic emission and vibration sensor, signal amplifier and
conditioner, data acquisition card, and computer.

*e rolling bearing test platform is jointly developed by
Henan University of Science and Technology, Luoyang
Bearing Research Institute, and Henan Engineering Labo-
ratory of Intelligent Numerical Control Equipment (it can
load 300 kN radial force and 200 kN axial force. *e max-
imum allowable inner diameter of the test bearing is
120mm); PCI-8 acoustic emission instrument (signal-noise
ratio 4.5, the frequency range is 1 kHz–3MHz, and the
maximum sampling frequency is 10m/s), R50S-TC acoustic
emission sensor (the measurement range is 50kHz–700kHz,
and the resonant frequency is 500 kHz), LC0151T acceler-
ation sensor (sensitivity 150mV/g, range 33G, resolution
40 kHz, resonant frequency 0.0002 g, and frequency range
0.7Hz–13 kHz), LC0201-5 signal conditioning unit,
PCI8510 data acquisition card (speed 500 k/s, 8 channels’
synchronous sampling), and NU216 metro traction motor
bearing (the inner ring diameter is 80mm, the outer ring
diameter is 140mm, and the width is 26mm) jointly build
the metro traction motor bearing test and physical infor-
mation collection system shown in Figure 2.

2.2. Test Bearing and Defect Prefabrication. *e test bearing
is the NU216 cylindrical roller bearing. Six types of cracks
and pitting defects were fabricated on the outer ring, inner
ring, and rolling body of the bearing by using the Daqing
YLP-MDF-152 3D optical fiber laser marking machine
(defect size: crack width of 30 um, pitting diameter of 40 um,
and depth of 30% of laser energy). Figure 3 shows the defects
of the precast bearing outer ring.
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2.3. Test Parameters and Test Plan. Under actual working
conditions, the radial load of the subway traction motor
bearing in stable operation is 7 kN, and the speed is
4800 rpm. Due to the limitation of the loading bearing, the
maximum speed of the subway traction motor bearing test
platform is 2400 rpm. *eoretically, there should be dif-
ferences in the signal characteristics generated by the various
defects of the subway traction motor bearing under the same
speed and load. During the operation of subway vehicles, the
speed increase, the relative uniform speed, and the decel-
eration are repeated, and the station interval, passenger flow,
and slope are constantly changing, so if using the data under
the same speed and load when analyzing the bearing signals
of subway traction motors, the effective data will be greatly
reduced. And, due to changes in passenger capacity, the
signal characteristics of the same location will also change
slightly. And, the changes of speed and load may cause
subway traction motor bearings with different defectives to
produce similar signal characteristics under certain speed
and load, which will further affect the diagnosis result.
*erefore, three loads and speeds are set to simulate the
working conditions of subway traction motor bearings
under high speed, medium speed, and low speed and large
load, medium load, and low load. According to the actual
working conditions of the subway traction motor bearing, 1/
4th of the radial load in stable operation is taken as the
fluctuating value, and the test is carried out according to the
gradient equivalent dynamic load of 5 kN, 7 kN, and 9 kN
after rounding. At the same time, the gradient speed was
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Figure 1: Schematic diagram of the rolling bearing test and information acquisition system.

Figure 2: Bearing test and information collection system of the
metro traction motor.

Figure 3: Prefabricated defect on the bearing outer ring.
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selected as 800 rpm (low speed), 1600 rpm (medium speed),
and 2400 rpm (high speed). *e variables in the test are fault
type, speed, and load. *ere are altogether 54 seed tests
(6× 3× 3� 54). *e test arrangement is shown in Table 1.

Introduce changes in load and speed to adapt to the
diagnosis between samples of known working conditions
(speed and load) and samples of unknown working con-
ditions (or between samples of cross-working conditions),
and it is expected to realize the diagnosis of adaptive working
conditions.

3. Signal Analysis and Feature Selection

3.1. Test Signal Analysis. *e vibration signals of six types of
bearing under the same working conditions of 2400 rpm and
7 kN are collected, and the frequency distribution diagram is
shown in Figure 4.

It can be seen from Figure 4 that there are obvious
differences in the frequency band of 5000Hz–10000Hz for
the bearing of six fault types, and the difference is slight
between 0Hz–5000Hz and 10000Hz–25000Hz.

However, under the actual working conditions, the load
and speed will also change due to the change of the subway
track gradient, the number of passengers, and so on. *e
vibration signals of the bearing with outer ring crack under
the test conditions of the same speed (2400 rpm) and dif-
ferent loads (5 kN, 7 kN, and 9 kN) are collected, and the
frequency distribution diagram is shown in Figure 5; the
vibration signals of the bearing with outer ring crack under
different speeds (800 rpm, 1600 rpm, and 2400 rpm) and the
same load (5 kN) are collected, and the frequency distri-
bution diagram is shown in Figure 6.

It can be seen from Figures 5 and 6 that the influence of
speed change on the signal is greater than that of load
change; for the same fault bearing, the frequency distribu-
tion and frequency amplitude are clearly different under
different speeds and loads. From a global point of view, the
differences caused by speed and load may make the dif-
ferences between different types of bearings overlap. *e
acoustic emission signal is similar to the vibration signal and
will not be described in detail.

3.2. Feature Selection. When the bearing fault is small or
even weak, due to the low signal-to-noise ratio, the extracted
signal features cannot reflect the real situation of the fault. In
this case, the frequency range can be predetermined, then
the signal is processed by using a filter, and finally the
features are extracted. In this paper, there are differences in
all kinds of fault types of bearings in the whole frequency
band, and the conventional filtering method cannot describe
the differences of various fault types of bearings. Since
wavelet packet decomposition [20] is an analysis method
with good local characteristics in both the time domain and
frequency domain, the 8-level wavelet packet decomposition
method is used to divide the original signal into 256 fre-
quency bands in this paper; then, according to the frequency
distribution obtained from the test, the root mean square
value, kurtosis value, and margin value are extracted as the

initial eigenvalues, and the initial eigenvector is formed after
combination. *e calculation formulas of root mean square
(RMS), kurtosis (KR), and margin (c) are as follows:

Table 1: Test schedule.

Speed (r/min)
Inner ring

(kN)
Outer ring

(kN)
Rolling

element (kN)
Crack Pitting Crack Crack Pitting Crack

800 5 5 5 5 5 5
800 7 7 7 7 7 7
800 9 9 9 9 9 9
1600 5 5 5 5 5 5
1600 7 7 7 7 7 7
1600 9 9 9 9 9 9
2400 5 5 5 5 5 5
2400 7 7 7 7 7 7
2400 9 9 9 9 9 9

Inner ring crack
Inner ring pitting

Outer ring crack
Outer ring pitting

Rolling element crack
Rolling element pitting
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Figure 4: Frequency distribution of bearing vibration signals of six
fault types under the same working condition.
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Figure 5: Frequency distribution of the vibration signal of outer
ring fault under the same speed and different loads.
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Considering the influence of the original signal, there are
1542 elements in the initial eigenvector Zm
((256 + 1)∗ 3∗ 2 � 1542). After normalization, the initial
eigenvector Zm is obtained.

4. Information Fusion

Information fusion is an information processing process in
which the measurement information of several sensors
acquired according to the time sequence is automatically
analyzed and comprehensively processed by the computer
under certain criteria, to complete decision-making and
estimation tasks. Compared with single-information source
signal processing technology, information fusion technology
is more reliable and effective. According to the level of
fusion, it can be divided into data-level fusion, feature-level
fusion, and decision-level fusion. Among them, feature-level
fusion is to preprocess the information, extract the features,
and then fuse the feature information, which not only retains
the important features of the input information but also
greatly reduces the amount of computation. Compared with
data layer fusion, although the amount of data in the feature
layer is not as much as that in the data layer, the amount of
data in the feature layer is still large. *e convolution neural
network can extract the features of the diagnosis objects
adaptively. In this paper, a convolutional neural network is
used to fuse information in the feature layer.

Convolution neural network can process the original
signal directly. However, the dimensions of the signals
collected by vibration sensors and acoustic emission sensors
are different, and even the magnitude of features extracted
from single sensor signals is not the same in different scales.
*erefore, the original signals must be preprocessed strictly
before information fusion.

In this paper, wavelet packet decomposition is used to
process the original signal, and then, the multistage signal
with different frequency information is obtained. *en, the
multistage signal is processed, and the original features are
quantized to obtain the original features, and the original
features are combined to form the feature vector. Let the
eigenvector of the signal collected by a single sensor be Zi
(i ∈ 1, 2, ...). *e eigenvector of multisensor synthesis is A;
the relationship between A and Zi and the elements in A are
shown in the following formulas:

A � z1, z2, . . . , zm􏼂 􏼃
T
, (2)

A �

a11 . . . a1n

⋮ ⋱ ⋮
am1 · · · amn

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (3)

where n is the number of extracted eigenvalues andM is the
number of samples.

*e dimension of each element in the eigenvector matrix
A is still not uniform, which does not conform to the data
format processed by the neural network. Because the neural
network focuses on capturing the differences between dif-
ferent types of data and the feature vectors only compare
elements in the same position, it is necessary to convert the
values of each element from an absolute value to a relative
value tomeet the requirements of the neural network. Let the
set of elements in each column be Nj, and the characteristic
matrix after normalized transformation is B. *e relation-
ship betweenNj and B is shown in formula (4); if the element
in B is bij, then the transformation relationship is formula
(5):

A � N1,N2, . . . ,Nn( 􏼁, (4)

bij �
aij

min Nj􏼐 􏼑
− 1. (5)

In this case, the maximum value Fj in bij is shown in the
following formula:

Fj �
max Nj􏼐 􏼑

min Nj􏼐 􏼑
− 1. (6)

*erefore, the numerical range of elements in Nj is (0,
Fj − 1). *e elements in the transformed characteristic
matrix B are as follows:

B �

b11 . . . b1n

⋮ ⋱ ⋮

bm1 · · · bmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

2400rpm

1600rpm

800rpm

0.94

1.88

2.82

3.76

A
m

pl
itu

de

5000 10000 15000 20000 250000
Frequency (Hz)

Figure 6: Frequency distribution of the vibration signal of outer
ring fault under the same load and different speeds.
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*e transformed eigenvalues are all greater than 0, and
the maximum value Fj of each column element is still un-
certain. It is necessary to normalize bij of elements in B
before inputting the neural network. *e traditional nor-
malization method usually converts all data into a specific
interval through linear or nonlinear processing.*e premise
of this method is that the numerical range of the data is
known, so it can be compared with each other, so it can be
globally normalized. However, the data in this article is
collected by two sensors and consists of three eigenvalue
arrangements. *e value range of each column of data Nj is
(0, Fj − 1], where the value of Fj is not certain, that is, the
value ranges between different columns of data are different,
so they cannot be compared with each other. *e data
processed column by column can still reflect the difference
between different rows of data. *erefore, a column-by-
column normalization method is used to further convert the
eigenvalues to the same numerical range for use by the
neural network. *e difference between the column-by-
column normalization method used in this article and the
traditional normalization method is shown in Figure 7.

Let each column element in the characteristic matrix B
be Mj, and the normalized signal is cij, then the conversion
relationship between bij and cij is shown in the following
formula:

cij �
bij − min Mj􏼐 􏼑

max Mj􏼐 􏼑 − min Mj􏼐 􏼑
. (8)

5. Convolution Neural Network

Convolution neural network is a kind of feedforward neural
network which contains convolution calculation and has
deep structure. It adopts an unsupervised or semisupervised
learning mode and can classify the input information
according to its hierarchical structure. It can automatically
and accurately identify the common features of the same
kind of signals and the difference features of different kinds
of signals, to obtain the high-level abstraction of image data.
It overcomes the shortcomings of traditional feature ex-
traction, such as over dependence on prior knowledge and
expert experience, low precision, and difficulty in
generalization.

Figure 8 shows the structure of the convolution neural
network [21, 22], including the input layer, convolution
layer, pooling layer, full connection layer, and output layer.
Convolution layer, pooling layer, and full connection layer
constitute the hidden layer. *e convolution layer is the
feature extraction layer, which uses local links and weight
sharing, and uses multiple convolution kernels to extract
features from data. In this paper, there are 1542 elements in
the feature vector Zm obtained from the data feature fusion
of the two sensors. Because the two-dimensional convolu-
tion neural network is used, the elements in Zm need to be
supplemented by 0 operations and then converted into a
40× 40 matrix as the input of the two-dimensional con-
volutional neural network. *e convolution layer contains
several convolution kernels with the size of 3× 3. *e

moving step size of the convolution kernel is 1, and each
convolution kernel element corresponds to a weight matrix.
Each neuron in the convolution layer is connected to several
neurons close to the region in the upper layer. *e size of the
region is the size of the convolution kernel. *e main
function of the convolution layer is to extract the features of
the input data.

*e convolution layer can be described as a mathe-
matical function. Let the input of the convolution layer be

z(l+1)
� w

(l)
+ x

(l)
+ b

(l)
, (9)

where x(l) is the output of the previous layer, and the output
is

x
(l+1)

� f z
(1)

􏼐 􏼑, (10)

where w(l) is the convolution kernel of the l layer, b(l) is the
bias, and f is the activation function.

If the classifier is directly followed by the convolution
layer, it may lead to overfitting because of the high input
dimension.*erefore, it is necessary to add a pooling layer to
reduce the dimension. If the definition of the pooling
function is lower, it can be expressed as

X
l+1
k � f w

l+1
lower Rk( 􏼁 + b

l+1
􏼐 􏼑, (11)

where wl+1 is the weight and bl+1 is the offset of the function.
*e pool layer selects and filters the feature graph

extracted from the convolution layer and replaces the results
of a single point in the feature graph with the statistics of its
adjacent regions, which can reduce the number of nodes in
the final fully connected layer. In this paper, a 2× 2 pooling
matrix is used to reduce the number of nodes in the final full
connection layer, and the moving step is 2.

*e convolution layer can extract the features of data,
and the output of the whole convolution layer can be
regarded as a new data matrix, which contains the feature
information of the input data. *erefore, a second convo-
lution layer can be added for deeper feature extraction, and a
pooling layer is added between the two convolution layers
for data dimension reduction. After passing through the first
layer of the convolution layer, the data is reduced from
40× 40 to 38× 38 and then through a pooling layer. Because
the moving step of the pooling matrix of the pooling layer is
2, the data is converted from 38× 38 matrix to 19×19
matrix, realizing the data dimension reduction; then, the
data enters the second convolution layer, and the data is
reduced from 19×19 to 17×17; then, a pooling layer is
added, and the pooling matrix is added.*e boundary of the
pool layer is filled with 0, and the data is reduced from
17×17 to 9× 9. After two convolution layers and pooling
layer, the feature depth extraction is realized, and the data
dimension is greatly reduced.

*e full connection layer is the last part of the hidden
layer of the convolutional neural network. *e output is
obtained by the nonlinear combination of the extracted
features and only transmits signals to other fully connected
layers. *e output layer generally uses the “Softmax” clas-
sifier, which is very effective in multiclassification. *e full
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connection layer and the output layer can classify the
samples and get the probability distribution of different
types of current samples.

*e structure parameters of the convolution neural
network constructed in this paper include the number of
network layers, convolution kernel size, sliding step size,
learning rate and training time. According to the number of
input layer elements, the convolution layer is 2 layers, the
pooling layer is 2 layers, the full connection layer is 1 layer,
and the output layer is using the “Softmax” classifier. *e
convolution kernel is set to 3× 3, the sliding step size is set to
1, the learning rate is 0.001, and the activation function is
“relu” activation function. If the epochs are set too high, the
training time will be greatly prolonged, and even overfitting
will be caused. If the epochs are set too low, the recognition
accuracy will be affected, so it needs to be tested before
determination. In this paper, when the speed is 800 rpm, the
data with load of 5 kN and 7 kN are selected as the training
set data, and the data with the load of 9 kN is the test set data.
*e diagnostic error rate and accuracy curve obtained by the
preliminary test under single working condition change are
shown in Figures 9 and 10 . It can be seen from the figure that

when the training times reach 15 times, the ideal state is
achieved for the first time, and then, it experiences many ups
and downs, so the training is adopted. *e accuracy re-
quirement can be met by 25 times.

6. Bearing Fault Diagnosis Method Based on
CNN and Information Fusion

To realize the intelligent diagnosis of bearing fault of the
metro traction motor under different working conditions
and types, firstly, the signals of known working conditions
and fault types are used as samples to input the convolu-
tional neural network model for training, and then, the
bearing signals of unknown working conditions and fault
types are intelligently diagnosed. *e process of intelligent
fault diagnosis of the metro traction motor bearing based on
deep learning and information fusion is shown in Figure 11,
which mainly includes the following steps: (1) signal ac-
quisition; (2) signal preprocessing; (3) feature extraction and
normalization; (4) information fusion based on the con-
volutional neural network and training of the deep learning
model; (5) testing and diagnosis of test samples; (6) signal

Input layer
(40 × 40)

Convolution 
layer

(38 × 38)

Pooling layer
(19 × 19)

Convolution 
layer

(17 × 17)

Pooling layer
(9 × 9)

Full
connection

layer
(64)

Output layer
(6)

Convolution Pooling Convolution Pooling

Figure 8: *e model of the convolution neural network.
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preprocessing, output the results, and complete the intel-
ligent diagnosis of bearing fault.

In this paper, we use the tensorflowmodule developed by
Google as the basic environment of the convolutional neural
network and Python 3.5 as the software programming

environment. According to the relationship between the test
set and the training set, it is divided into 4 derivation modes,
as shown in Figure 12, for intelligent diagnosis.

*e main factors affecting the actual operating condi-
tions of subway vehicles are speed and load, and these two
factors have a greater impact on the fault signal of the
bearing. By changing the speed and the size of the load, the
three working conditions of high, low, and medium and
mixed working conditions of two factors are simulated to
verify the robustness of the diagnostic method under various
working conditions. *ere are 8 basic diagnosis modes
shown in Table 2.

In the test, there are 6 types of faulty bearings, four of
each type of faulty bearings, and the fault signals were
collected under nine working conditions, a total of 216
samples.

6.1. Single Working Condition Fault Diagnosis. Based on the
8 basic diagnosis modes listed in Table 2, the speed and load
are controlled, respectively, and the single working condi-
tion fault diagnosis is carried out by using the convolution
neural network. *e diagnosis results are shown in Table 3.

*e relationship between the training set and test set in
Table 3 covers many situations in the actual test process.
Under the condition that the training set and the test set
cover the same working conditions, the sample ratio of the
training set to the test set is 3 :1 (Among the 4 samples of
each bearing, 3 samples are the training set, and the
remaining is the test set), and the rest is 2 :1 (the training set
is 2 working conditions, and the test set is 1 working
condition). From the relationship between the test set and
the training set, when the test set sample covers the same
condition type as the training set sample, the average di-
agnostic accuracy reaches 100%; when the test set sample is
within the training set sample interval, the average diag-
nostic accuracy reaches 97.92%; when the test set sample is
larger than the upper limit of the training set sample, the
average diagnostic accuracy rate reaches 94.44%; when the
test set sample is smaller than the lower limit of the training
set sample, the average diagnostic accuracy reaches 74.31%.

From the diagnosis results of each sensor, the average
diagnostic accuracy of using information fusion technology
is 91.67%; when using the vibration sensor as the infor-
mation source, the average diagnostic accuracy is 88.08%;
when using the acoustic emission sensor as the information
source, the average diagnostic accuracy rate is 74.31%.

In Table 3, the diagnostic accuracy rate of number 23 in
Table 3 is low. At this time, the diagnostic accuracy rate of
using information fusion technology is less than that of the
single information source, which is related to the low di-
agnostic accuracy rate of the single information source, and
the sample size of the test set is smaller than that of the
training set.

6.2. Fault Diagnosis of the Composite Working Condition.
In the actual operation process, there may also be composite
variation conditions, as shown in Table 4. In its diagnosis,
the training set and the test set are doped with the changes of

Acoustic emission signal

Wavelet packet decomposition

Extracting eigenvalues

Vibration signal

Wavelet packet decomposition

Eigenvalue extraction

Feature layer fusion

Convolution neural network diagnosis

Output results

Figure 11: Bearing fault diagnosis process based on deep learning
and information fusion.
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Figure 9: Influence of training time on diagnosis error.
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Figure 10: Influence of training time on the accuracy of diagnosis.
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load and speed at the same time. *e diagnosis results of the
training set and test set under two working conditions are
also shown in Table 4.

From the working condition relationship between the
test set and the training set in Table 4, when the test set
sample is within the training set sample interval, the average
diagnostic accuracy rate reaches 95.14%; when the test set
sample is larger than the upper limit of the training set
sample interval, the average diagnostic accuracy rate reaches
90.28%; when the test set sample is smaller than the lower
limit of the training set sample interval, the average diag-
nostic accuracy rate reaches 65.28%.

From the diagnosis results of each sensor, the average
value of diagnosis accuracy obtained by using information
fusion technology reaches 83.57%; when using the vibration
sensor as information source alone, the average diagnostic
accuracy reaches 80.79%; when using the acoustic emission
sensor as information source alone, the average diagnostic
accuracy rate reaches 70.14%.*e diagnostic accuracy of No.
3 in Table 4 is low, which is similar to that under the single
working condition, and the reason is the same.

6.3. Fault Diagnosis of the Flooding Condition. *e training
set and test set in Tables 3 and 4 are not generalized to all
working conditions. *erefore, the training set and test set
contain 54 types of test data at the same time, and the di-
agnosis results are shown in Figure 12. In the figure, the
vertical axis represents the actual bearing fault types, and
corresponding to 6 fault types, each fault type contains 9
working conditions, and the measured samples have 54
signals; the horizontal axis represents the probability of the
neural network predicting 6 fault types. *erefore, when the
diagnosis is correct, the column fault type of the block where
the probability value is located is the same as the row fault
type.

*e output value of the convolution neural network is a
probability value (range: 0%∼ 100%). For the unknown
signals, there are six output values, namely, a (probability
value of the fault being inner ring crack), b (probability value
of the fault being inner ring pitting corrosion), c (probability
value of the fault being outer ring crack), d (probability value
of the fault being outer ring pitting corrosion), e (probability
value of the fault being rolling element crack), and f

O

: Training set

: Test set

(a)

O

: Training set

: Test set

(b)

O

: Training set

: Test set

(c)

O

: Training set

: Test set

(d)

Figure 12: Four models of derivation. (a)*e test set sample is larger than the upper limit of the training set sample interval. (b)*e test set
samples are in the training set sample interval. (c) *e test set sample is smaller than the training set sample interval lower limit. (d) *e
sample interval of the test set is equal to that of the training set.

Table 2: Eight basic diagnostic modes.

No. Test variable Training set Test set
1 Speed (rpm) 800, 1600 2400
2 Speed (rpm) 800, 2400 1600
3 Speed (rpm) 1600, 2400 800
4 Speed (rpm) 800, 1600, 2400 800, 1600, 2400
5 Load (kN) 5, 7 9
6 Load (kN) 5, 9 7
7 Load (kN) 7, 9 5
8 Load (kN) 5, 7, 9 5, 7, 9

Shock and Vibration 9



(probability value of the failure is the rolling element pitting
corrosion). If a is the maximum value, the final judgment
result is of type a; if the value of a is much larger than the
other values, the confidence degree of the neural network is
higher; if the value of a is not different from other values, the
confidence degree of the neural network is low. As can be
seen from Figure 13, when the information fusion

technology is not used, under the diagnosis mode based on
the vibration sensor and acoustic emission sensor, the fault
types of inner ring crack and inner ring pitting corrosion are
misjudged, and the diagnostic accuracy rate is not 100%, and
the overall confidence level is low. After using information
fusion technology, not only the diagnostic accuracy rate is
improved to 100% but also the confidence level is higher.

Table 4: Accuracy rate of multicondition fault diagnosis.

No. Training set speed
(rpm)

Training set load
(kN)

Test set speed
(rpm)

Test set load
(kN)

Diagnostic accuracy (%)
Acoustic
emission Vibration Comprehensive

1 800, 1600 5, 7, 9 2400 5, 7, 9 73.61 77.78 80.56
2 800, 2400 5, 7, 9 1600 5, 7, 9 69.44 84.72 93.06
3 1600, 2400 5, 7, 9 800 5, 7, 9 25.00 37.50 36.11
4 800, 1600, 2400 5, 7 800, 1600, 2400 9 90.28 97.22 100
5 800, 1600, 2400 5, 9 800, 1600, 2400 7 84.72 97.22 97.22
6 800, 1600, 2400 7, 9 800, 1600, 2400 5 77.78 90.28 94.44

Table 3: Accuracy rate of single condition fault diagnosis.

No. Training set speed
(rpm)

Training set load
(kN)

Test set speed
(rpm)

Test set load
(kN)

Diagnostic accuracy (%)
Acoustic
emission Vibration Comprehensive

1 800 5, 7 800 9 94.44 95.83 100
2 800 5, 9 800 7 83.33 100 100
3 800 7, 9 800 5 66.67 70.83 91.67
4 800 5, 7, 9 800 5, 7, 9 100 100 100
5 1600 5, 7 1600 9 83.33 100 100
6 1600 5, 9 1600 7 95.83 100 100
7 1600 7, 9 1600 5 95.83 100 100
8 1600 5, 7, 9 1600 5, 7, 9 95.83 100 100
9 2400 5, 7 2400 9 100 100 100
10 2400 5, 9 2400 7 100 100 100
11 2400 7, 9 2400 5 91.67 100 100
12 2400 5, 7, 9 2400 5, 7, 9 100 100 100
13 800, 1600 5 2400 5 45.83 79.17 100
14 800, 2400 5 1600 5 54.17 83.33 100
15 1600, 2400 5 800 5 25.00 41.67 50.00
16 800, 1600, 2400 5 800, 1600, 2400 5 94.44 100 100
17 800, 1600 7 2400 7 54.17 83.33 83.33
18 800, 2400 7 1600 7 62.50 83.33 87.50
19 1600, 2400 7 800 7 33.33 50.00 75.00
20 800, 1600, 2400 7 800, 1600, 2400 7 77.78 100 100.0
21 800, 1600 9 2400 9 37.50 79.17 83.33
22 800, 2400 9 1600 9 75.00 100 100
23 1600, 2400 9 800 9 25 58.33 29.17
24 800, 1600, 2400 9 800, 1600, 2400 9 66.70 88.89 100
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In Figure 13, A is inner ring crack, B is pitting of the
inner ring, C is outer ring crack, D is pitting of the outer ring,
E is rolling element crack, and F is rolling element pitting.

7. Conclusion

Aiming at the problem of time-frequency feature adaptive
extraction and intelligent diagnosis in the process of rolling
bearing fault diagnosis under variable operating conditions,
a method for subway traction motor bearing fault diagnosis
based on information fusion under variable operating
conditions is proposed.

(1) In this paper, a subway traction motor bearing test
and a multi-information data acquisition system are
built, and tests under different working conditions
are carried out. *e wavelet packet decomposition
method is used to decompose the original signals of
vibration and acoustic emission during the test and
extract the features and then fuse the extracted
feature information. *ere are a total of 1542 ele-
ments in the feature vector Zm obtained after the data
features of the two sensors are fused. Perform zero-
filling operations on the elements in Zm, add to 1600
elements, and then convert them into a 40× 40
matrix as the input of the two-dimensional con-
volutional neural network. *e number of con-
volutional layers in the convolutional neural network
constructed in this paper is 2 layers, the pooling layer
is 2 layers, the fully connected layer is 1 layer, and the

output layer uses the “Softmax” classifier. *e con-
volution kernel is set to 3× 3, the sliding step is set to
1, the learning rate is 0.001, and the activation
function is the “relu” activation function.

(2) *e results show that① speed has a great influence
on the diagnosis results, but the load has little in-
fluence on the diagnosis results; ② increasing the
range of various working conditions in the training
samples can effectively improve the accuracy rate;③
when the training sample conditions cover the
working conditions of the tested samples, the di-
agnostic accuracy rate can reach 100%.

(3) *is article only considers the faults of three parts of
the bearing of the subway traction motor. *e
bearing cage faults, wear, deformation, and other
faults can be studied later.

(4) In this paper, a platform built in the laboratory is
used to carry out the research. It is necessary to add
devices that can apply vibration loads and shock
loads to be closer to subway operating conditions.
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Figure 13: Accuracy rate of general condition fault diagnosis.
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