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In the automotive industry, one of the critical issues is to develop a health monitoring system for condition assessment and
remaining fatigue life estimation of key load-bearing components including automotive suspension. However, considering the
difficulty to obtain expert knowledge and nonlinear dynamics in large-scale sensory data, health monitoring of automotive
suspension is a challenging work. With the development of deep learning based sequence models in recent years, a long short-term
memory (LSTM) network has been proved to capture long-term dependencies in time-series prediction without additional expert
knowledge. In this paper, a novel health monitoring system based on a LSTM network is proposed to estimate the remaining
fatigue life of automotive suspension. Specifically, first durability tests under various driving cycles are implemented to obtain
sequential sensory data provided by common sensors on a test car. Then, a LSTM-based load identification method is designed to
predict dynamic stress histories based on the available sensory data. Finally, the damages and remaining fatigue life of the
suspensions are estimated by each time step. The experimental results prove that our model can achieve a better performance

compared with other representative models.

1. Introduction

Structural health monitoring is becoming important for
condition assessment and future performance predictions of
critical load-bearing components in the automotive industry
[1, 2]. A well-designed monitoring system, assessing
structure integrity and predicting remaining fatigue life in
real time, can provide efficient inspection and improvement
plans in both automotive durability and lightweight design
in [3]. As one of the most critical load-bearing components
in cars, automotive suspension is subjected to various loads
under operating conditions and may suffer from significant
damage. Therefore, there is a stringent need to develop a
health monitoring system for the estimation of remaining
fatigue life and warn of required schedule to avoid failure.

In recent years, extensive research has been conducted in
structural health monitoring. According to the distinct
damage identification methods, existing health monitoring
systems can be divided into two categories: model-based
approaches and data-driven ones.

In the former case, the degradation process is identified
based on experimental response data from structures such as
fracture length and nature frequency [4-7]. The experi-
mental response data are usually collected by complicated
instruments usually applied to large machinery. In addition,
the performance of model-based approaches heavily de-
pends on the expert knowledge that is often unavailable in
practical applications. As a result, model-based approaches
are not suitable to be applied in series-production cars for
their high cost and uncertainty.

In the latter case, modeling the evolution of the deg-
radation process relies on processing history data based on a
detailed numerical model. Many researchers have make
efforts to devise reliable data-driven approaches in health
monitoring system, such as Extended Kalman Filter (EKF)
[8, 9], Back Propagation (BP) neural network [10-12],
particle filtering (PF) [13], Gaussian Process Regression
(GPR) [14], Support Vector Machine (SVM) [15], recurrent
neural networks (RNNs) [16], and the combination of these
algorithms [17], wherein the numerical model can map high
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dimensional and nonlinear relationship as well as predicting
the health status in real time without prior assumptions.
Additionally, with the improvement in sensors and com-
puter system, data-driven monitoring system becomes
preferred. Consequently, this work focuses on the data-
driven approaches for monitoring the actual level of damage
of automotive suspension.

The core step of data-driven monitoring systems is to
estimate the dynamic loads from sequential sensory data.
Among previous data-driven approaches, the neural net-
work approaches are not sequential models. They cannot
capture the sequential characteristics in the large-scale
sensory data, leading to poor predicted results. Except for
neural network approaches, other data-driven approaches
based on sequential models, including EKF and PF, are
suitable for addressing sequential data.

Foulard et al. [18] developed an online and real-time
monitoring method for remaining service life estimation of
automotive transmission, which can represent the state of
the art in the automotive industry. In this monitoring
method, an observer-based torque identification method
relying on an EKF is addressed to estimate damage of
transmission under real driving conditions. But the limited
use of EKF in nonlinear system and the inability of an EKF to
capture long-term dependencies affect the universality and
accuracy of this approach. For the fast development of data
measuring and data transmission technology, a huge
amount of vehicle vibration signals in real time can be
obtained by sensors nowadays. These tremendous vibration
signals facilitate a more accurate damage prognosis results.
Therefore, improving the prognosis accuracy by using
available vibration signals is a promising research direction
in developing a health monitoring system.

Most  aforementioned data-driven identification
methods are restricted in searching the shallow correlation
within the limited data, which cannot penetrate deep cor-
relation and implicit load information [19]. With the fast
development of artificial intelligence in recent years, espe-
cially deep learning and recurrent neural network, modeling
complex nonlinear relationship with advanced learning
approaches has become a new trend [20]. A long short-term
memory (LSTM) network, which is originally introduced for
sequence learning, is able to cope with the complex corre-
lation within time series in long time term [21-24]. In near
several years, LSTM networks have been applied to capture
nonlinear dynamics in time-series sensory data [25-30]. In
these researches, the LSTM network has obviously higher
performance than traditional data-driven approaches. The
results in their studies suggest that this advanced machine
learning approach deserves to be considered a new effective
tool in the specific task of monitoring the health status of
automotive suspensions.

However, the researchers in [25-30] tested their LSTM
networks through test rig under laboratory conditions or
specific working condition. Therefore, they mainly focused
on theoretical analysis. However, due to complex vibration
loads under real operation conditions, it is far from an easy
work to conduct a practical application for LSTM-based
technologies. To validate the superiority and practicability of
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LSTM networks, our health monitoring system is applied to
an automotive suspension component under real operation
conditions.

In this paper, we propose an applicative approach to
develop a health monitoring system for estimating
remaining fatigue life of automotive suspensions. In the
proposed health monitoring system, firstly, durability tests
are implemented to collect sensory data for building data-
base of the monitoring system. The sensory data contain two
types of signals: vibration signals and fatigue loads. Then, a
LSTM-based fatigue load identification method is developed
to capture the nonlinear relationship between the vibration
signals and fatigue loads in terms of stress histories. Finally,
the well-trained LSTM network predicts current fatigue
loads from real-time measurement values of vibration sig-
nals. Based on the predicted fatigue loads, the damage
condition and remaining fatigue life of the component are
calculated. The performance of the proposed approach is
validated by comparative analyses of the estimated damage
results with different methods. As the automotive tech-
nology advance, vehicles are equipped with more and more
sensors, an important part of which is to measure some
vibration signals for monitoring and controlling the cars.
Therefore, the proposed approach provides a new strategy
for developing an applicative health monitoring system in
series-production cars.

This paper is organized as follows. In Section 2, the
adopted flowchart for the monitoring system development is
overviewed. In Section 3, details of tests to collect sensor-
based signals and the damage calculation model are de-
scribed. In Section 4, the proposed LSTM-based load
identification method is presented. Section 5 shows the
estimated results of damage condition. In Section 6, the
conclusions and the perspectives are presented.

2. Overview of the Proposed Approach for
Remaining Fatigue Life Estimation of
Automotive Suspensions

The proposed approach is aimed at developing an applicative
health monitoring system for estimating the remaining fa-
tigue life of automotive suspensions. As illustrated in Fig-
ure 1, it consists of three main modules: data collection,
fatigue load identification, and damage prognosis.

Firstly, as a data-driven study on developing a health
monitoring system, a set of sample data are needed to be
collected. The data collection should be carefully imple-
mented to make sure that the samples data are accurate,
comprehensive, and discriminative. Following this guide-
line, durability tests under various driving cycles are
implemented. In the tests, two types of signals are collected
by sensors, vibration signals and fatigue loads. The vibration
signals are measured by common sensors in series-pro-
duction cars, such as accelerometer and gyroscope. The
fatigue loads are measured by sensors only equipped in
testing phase, such as strain rosette.

Then, the collected sensory data are then processed in the
second module of the framework. The fatigue load
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identification works as the core part of the monitoring
system, which can capture the nonlinear relationship be-
tween the vibration signals and fatigue loads from historical
data as well as predicting corresponding fatigue loads from
real-time measured vibration signals.

Finally, the damage prognosis module uses reliable
damage calculation model to compute the damage level of
the automotive suspensions and corresponding remaining
fatigue life. Once the predefined threshold for the compo-
nent reliability is exceeded, the system sends alarm main-
tenance signals.

3. Sensory Data Collection and Damage
Calculation Models

The health monitoring of automotive suspensions involves
dynamics events such as operation processes for different
road profiles, wheel dynamics, and body vibrations. In
addition, it involves nonlinearity such as large deformation
at extreme operation conditions [31]. Therefore, the torsion
beam suspension model can serve as reference, considered as
representative of the real automotive nonlinear dynamics.
There are seven main welded parts in the torsion beam



suspension (see Figure 2). Table 1 shows the material
properties for each part of the components obtained from
the manufacturer. As the key load-bearing component in a
vehicle, the torsion beam suspension is subjected to complex
variable loads under service loads, vulnerable to damage.
The aforementioned data-driven approach is adopted in
the monitoring system. In this regard, data collection is of
great importance. Although using a simulation model is a
growing trend in automotive engineering for its low cost and
high efficiency, it is still difficult to achieve accurate dynamic
loads by simulation techniques, allowing for nonlinearity
[32] and large data length. Under this consideration, various
durability tests are implemented for data collection. The
main contents of the experimental works consist of two
aspects. The first is to specify the driving cycles that can
reflect real operation conditions. The second is to specify the
measured signals in the sample data. Theses aspects are
addressed in the following subsections, respectively.

3.1. Driving Cycles. To make the monitoring system effective,
various driving cycles, which should cover real operation
conditions as many as possible, are selected in the process of
bench tests and road tests. The bench tests are performed to
obtain data set for training and testing the LSTM model in
fatigue load identification method. After establishment, the
LSTM model is validated by error analysis of the predicted
fatigue loads from measured vibration signals in road tests.

The reason for not using road tests to collect all data set is
justified in two essential aspects. Firstly, it is of high cost and
time consuming to drive the vehicle on all the necessary
driving cycles. Secondly, the reproducibility of the tests will
not be ensured, which is of great importance to the results.

Three continuous factors of operating conditions are
varied in driving cycles: road profile, additional load, and
driving speed. In the bench tests (see Figure 3), the selected
driving cycles consist of 20 road profiles. These profiles are
divided into two types: the first type, called standard road
profile, consists of 6 reconstructed road profiles based on
international road standard (class A-F) [33]. The second
type, called proving ground road profile, consists of 14 road
profiles obtained from Xiangyang automotive proving
ground (Belgian, disrepair, railway, small bump, pebble,
washboard, fish scale, twist, big bump, speed bump, reso-
nance, sandstone, brake, and long wave).

In the road tests, the vehicle runs on different types of
road (country road, pavement, and highway) with different
speeds and additional loads. As some driving cycles lead to
small fatigue loads, they cause a minor impact on damage
calculation of the suspensions and share a small proportion
in the whole driving cycles of various factor combinations. It
means that most of the combinations of low speed, small
additional load, and smooth road profile are neglected in this
work. The car mass of the experimental vehicle, equipped
with the reference suspension, is about 1200kg for a
maximal power of 92.6 kw. The range of the additional load
is from 60 to 500 kg. The range of the speed refers to the test
specifications of the proving ground and traffic laws. As an
example, the speed is limited in the range from 60 to 120 km/
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FIGURE 2: Target torsion beam rear suspension.

h on a China’s highway (class A-C). All the combinations in
the bench tests are presented in Table 2. The selection of the
combinations of operation conditions refers to [6]. All the
tests in our experiments are implemented according to
motor vehicle durability running test method [34].

3.2. Measured Signals. The vibration signals, having effects
on the damages calculation of the automotive suspension,
are measured as referred signals in experimental tests. As the
monitoring system is developed for its application to series-
production vehicle, the available signals on the Controller
Area Network (CAN) of a standard vehicle have to be taken
into consideration. For the sake of generality, available
signals are measured by common sensors: the displacement
and angular velocity of vehicle body in the x, y, and z di-
rection, the deformation of two springs and two shock
absorbers in the rear torsion beam suspension, the defor-
mation of the two springs in the Macpherson front sus-
pension, and the vertical acceleration of the four spindles in
the center of wheels. Though fewer signals may be needed in
this monitoring system by feature selection for signals from
simulation model, sixteen measured signals are considered
to store information for developing potentially promising
method from a long-term perspective.

In the experimental tests, we measure the stress histories
in critical positions that act as goal values during the process
of designing the architectures of the supervised-learning
LSTM network. The stress histories are only measured in the
stage of the monitoring system development, estimated by
using the well-trained LSTM network in the stage of
monitoring system application. The critical positions for
fixing strain gauges (45-degree internal angle of rosette) are
chosen based on simulation model and practical cases (see
Figure 4) [35]. It is clear that the critical positions are located
in welded connections.

During the road tests, all test equipment has been strictly
inspected to ensure its good condition, including the strain
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TaBLE 1: Material properties for each part of the torsion beam suspension.
Rotatable Trailing Torsion Spring Buffer Flange Reinforcing
supporting arm beam seat seat part beam
Thickness (mm) Solid 4 4.5 4 10 6 Solid
Ultimate tensile strength 440 550 568 550 470 510 537
(MPa)
Yield strength (MPa) 235 345 432 430 310 416 305
Elasticity modulus (MPa) 2.07E5 2E5 2E5 2E5 2E5 2E5 2.07E5
Fatigue strength coefficient 2144 917 950 917 570 421 1517
(MPa)
Fatigue strength exponent -0.179 —0.095 —0.095 —0.095 —-0.09 —-0.09 -0.14
FIGURE 3: Bench test.
TasLE 2: All the driving cycles in the bench tests.
RP AL S T RP AL S T RP AL S T RP AL S T RP AL S T
A 60 100 30 B 60 90 30 C 60 80 30 D 60 50 60 E 60 20 60
A 60 120 30 B 60 110 30 C 60 100 30 D 60 60 60 E 60 30 60
A 300 80 30 B 200 100 30 C 200 90 30 D 200 50 60 E 200 20 60
A 300 100 30 B 300 90 30 C 300 80 30 D 300 50 60 E 300 10 60
A 300 120 30 B 300 110 30 C 300 100 30 D 300 60 60 E 300 20 60
A 500 80 30 B 500 70 30 C 500 60 30 D 500 40 60 E 500 10 60
A 500 100 30 B 500 90 30 C 500 80 30 D 500 50 60 E 500 20 60
RP AL S T RP AL S T RP AL S T RP AL S T RP AL S T
F 60 20 60 Di 60 45 60 Ra 400 40 60 Pe 400 30 60 Fi 300 40 60
F 60 30 60 Di 200 35 60 SB 60 35 60 Pe 500 20 60 Fi 400 30 60
F 200 20 60 Di 300 30 60 SB 100 35 60 Wa 60 50 60 Fi 500 20 60
F 300 10 60 Di 500 20 60 SB 300 30 60 Wa 200 40 60 Tw 300 10 60
F 300 20 60 Ra 60 45 60 SB 500 20 60 Wa 300 30 60 Tw 500 10 60
F 500 10 60 Ra 300 30 60 Pe 60 50 60 Wa 500 20 60 BB 60 25 60
F 500 20 60 Ra 500 15 60 Pe 300 40 60 Fi 60 50 60 BB 300 20 60
RP AL S T RP AL S T RP AL S T RP AL S T
BB 400 15 60 Sp 300 50 60 Sa 60 30 60 Br 500 10 60
BB 500 10 60 Sp 400 40 60 Sa 300 20 60 Lo 60 45 60
Be 60 20 60 Sp 500 35 60 Sa 400 15 60 Lo 200 40 60
Be 200 15 60 Re 60 30 60 Sa 500 10 60 Lo 300 30 60
Be 300 15 60 Re 200 25 60 Br 60 30 60 Lo 500 20 60
Be 500 10 60 Re 300 20 60 Br 300 20 60
Sp 60 60 60 Re 500 10 60 Br 400 15 60

RP: road profile AL: additional load (kg) S: speed (km/h) T: duration of the test (second)

A-F: class of international road standard

Di: disrepair Ra: railway SB: small bump Pe: pebble Wa: washboard Fi: fish scale

Tw: twist BB: big bump Be: Belgian
Sp: speed bump Re: resonance Sa: sand stone Br: brake Lo: long wave




FIGURE 4: Measuring points of the automotive suspension.

gauges and data acquisition equipment. Then, the measured
vibration signals and strain signals are amplified, filtered,
transferred to digitals, and then imported to computer
analysis system in the sampling frequency of 500 Hz during
the tests. The stress histories can be calculated with the
following formula:

o, E €0+£90
0, T2 1-u 1+y

\/ 845)2 +(&45 = 590)2 ]

Tmax 1+‘u\/(€° _345) + (&45 _590) >
(1)

where Young modulus E is 2.07 x 10> MPa, Poisson ratio is u
0.27, &), €45, and &y, are measured strain signals from each
strain rosette, respectively, o, and o, are two principal
stresses, and 7,,,, is the maximum shear stress.

In consideration of analytical efficiency, the data set
collected from bench tests is preprocessed by extracting
partial data representing each driving cycle and reducing the
sampling frequency to 100Hz. The details of the pre-
processing step can be found in [18, 36]. In this work, the
total number of extracted sequential data is about 120
thousands. Then, these extracted data are divided into two
sets, a training data set and a test data set (that is not a subset
of the training set). As the data set is time-series signal, the
dynamic response at a time step may be related to current
inputting loads and previous inputting loads. As a result,
K-fold cross-validation is not a suitable method used to
divide the extracted data. The first 80 percent of signals in
each driving cycle are selected as training data set with the
rest of signals as test data set. The collected sequential data in
road tests are also preprocessed by frequency decrease, and
their total number is about 50 thousands.

3.3. Damage Calculation Model. The normal stress method,
in combination of linear damage accumulation method
(Palmgren-Miner rule) and rain-flow counting method, is
considered for the damage calculation in the health moni-
toring system [37]. The model for damage calculation and
remaining fatigue life estimation is presented in Figure 5. We
update the partial damage AD;, the total damage D, and
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FIGURE 5: Adopted damage calculation model.

remaining fatigue life indicted by remaining mileages M, in
the critical positions every minute using the following
functions:

Ao\ (VD)
o
St
n; D
AD,=Y D=y DM, = (L -1)+ M,
Ny L D

where the spectrum of stress ranges Ac; and associated
number of counted cycles n; for the current time step are
calculated by rain-flow counting method. The material
properties parameters (S, and b) for each part of the
components are obtained from the manufacturer. N is the
number of cycles to failure at each stress range; Dy is the
total damage as the component fails; M; is the mileages in
the current time step.

(2)

4. Fatigue Load Identification

The challenge of developing a health monitoring system lies
in proposing an accurate and easily implementable fatigue
load identification method. As the signals in the monitoring
system are in the form of continuous time-series data, a
dynamic neural network dealing with time sequential inputs
is suitable. For this reason, a recurrent neural network
named LSTM network is adopted.

4.1. Structure of LSTM Network. The primary objectives of
LSTM network are to model long-term dependencies and
determine the correlation for time-series problems. These
features are desirable for fatigue load identification. In the
structure of a LSTM network, it uses special hidden units
called memory cells to remember input for a long time,
which is the key for its application in time-series analysis.
Figure 6 illustrates a single memory cell. The model input is
known data denoted as X, with the output of the forecast
result denoted as Y,. In the context of fatigue load identi-
fication, X represents measured vibration signals and Y the
stress histories in one of the critical positions. There are three
gates in the memory cell, namely, input gates, forget gates,
and output gates. Moreover, the state of the cell is indicated
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by C,. As the information flow in the structure of memory
cell, the state and output updates can be implemented by the
following functions:

ft = U(foXt + thht—l + bf)’
iy = 0 (W, X, + Wyh_, +b,),
Ci=fi#Cpy +ip* tanh (W, X, + W h,_, +b,),
= U(onXt + Whoht—l + bo)’
=0, * tanh(C,),
Y, =o(Wy,h +b,),

(3)

L
|

=
|

where ‘ + is scalar product, o is the logic sigmoid function, i,
f, o, and c are, respectively, the input gate, forget gate,
output gate, and cell state vectors, all of which are the same
size as that of the hidden vector h, and W are the weigh
matrices.

The core of memory cell is the recurrently self-connected
unit. The memory cells memorize the temporal state and
control the information flow in the LSTM network by the
three adaptive and multiplicative gating units. The input and
outputs gate control the input and output activations into
the memory cell, respectively. A forget gate is added to the
memory cell to prevent the internal cell values from growing
too large. It is realized by resetting itself once the infor-
mation flow is out of date or by replacing the cell state with
the multiplicative forge gate activation. By training the
parameters in memory cells layer by layer, the LSTM net-
work can store information and capture the complex cor-
relation features in both short and long terms by the
function of different gates. Therefore, the LSTM network can
predict stress value in the next time step based on prior
information without specifying the number of previous steps
to be tracked back.

In the whole LSTM topology with input and output
layers, the output forecast result is based on the internal
computation of the memory cells in hidden layers.
Therefore, the number of hidden layers and the number of
LSTM memory cells in each hidden layer are the two key
factors in modeling a LSTM network for fatigue load
identification. Moreover, as higher-level modeling of input
feature can make a LSTM network easier to learn temporal
between successive steps [38], the selection of input

variations is of great importance to the performance of the
LSTM network.

4.2. LSTM Network Training. The input and output data are
normalized so that every element of the input and output
vectors is in range from zero to one. Then, the most
characterizing features of the observed input data are
identified by an advanced feature selection method named
RCDEFS, in which relevance, redundancy, and redundancy-
complementariness dispersion are taken into account to
select the most effective subset from the measured vibration
signals [39]. As a result, four input data, which are, re-
spectively, the displacement of vehicle body in the z di-
rection, the angular velocity of vehicle body in the x
direction, and the deformation of two springs in the rear
torsion beam suspension, are chosen as the maximum
factors influencing the measured stress histories. Various
LSTM networks are evaluated, varying along three main
hyperparameters, the number of hidden layer (nh), the
number of memory cells in each hidden layer (nc), and
learning rate («). During the training of various LSTM
networks, weight parameters are updated by root mean
square propagation (RMSprop) optimization method. The
detailed execution steps are referred to in [40, 41]. For
different stress histories at each critical position, the cor-
responding LSTM network is trained.

4.3. Determination of the LSTM Network. Different combi-
nations of nh, nc, and « are used to obtain the best per-
formance for the test data set. To achieve trade-off between
training speed and convergence accuracy, nh is restricted in
the range from 1 to 5, nc30 to 80. In the process of tuning
these hyperparameters of the LSTM network, two findings
are discovered: an improper setting can lead to a bad per-
formance; nh is less important than other two hyper-
parameters. By trial and error, the final architecture of the
LSTM network with the lowest error rate in the form of
mean square error is achieved as shown in Figure 7. It can be
found that the determined three main hyperparameters nh,
nc, and « are 1, 40, and 0.5, respectively. Besides, the
maximum number of epochs and the batch size are set to
1000 and 50, respectively.
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TaBLE 3: Performance of different models.
Cat L . Point 1 Point 2 Point 3 Point 4
ategor ayer size
8oy Y R? P (%) R? P (%) R? P (%) R? P (%)
SVM C-1.2G - 1000 0.52 -43.6 0.50 -46.9 0.52 -44.4 0.51 -45.9
BP 500-500 0.55 -41.8 0.54 -40.8 0.54 -42.3 0.54 -42.8
NARX 50 0.63 -21.2 0.59 -23.3 0.64 -22.6 0.60 -25.7
EKF 0.39 -81.4 0.43 -73.2 0.39 -77.9 0.41 -75.6
LSTM 40-40 0.76 -17.1 0.78 -16.7 0.76 -16.9 0.75 -17.5

5. Result Analysis and Comparison

The proposed LSTM network is validated by the use of
collected data set from road tests. The predicted stress
histories and the measurements are compared, and a short
part of the results are shown in Figure 8. The comparison
shows that the predicted stress histories have similar dy-
namic patterns with the measurements, close to the mea-
surements. Two criteria are used to evaluate the performance
of the proposed LSTM network: the dynamics and damage
estimation accuracy of the predicted results in comparison
with the measurements. The former is in the form of
R-square (R?) for the stress histories, and the latter in the
form of deviation for the calculated damage value (P).where
Y, are the predicted stress histories, Y, are the measured
stress histories, Y, is the mean value of the measured stress
histories, and D and D are the damage value calculated by
measured stress histories and predicted stress histories,
respectively. The two criteria are chosen for two reasons.
First, the predicted stress histories are used for damage
calculation in our damage-oriented health monitoring
system. Second, damage mainly reflects the entire distri-
bution of stress histories, which can be revealed by R.

To validate the efficiency of the proposed LSTM network
turther, the performance of the LSTM-based identification

method is compared with that of several methods using
other representative models. In this paper, SVM, BP neural
network, NARX neural network, and EKF are selected as
comparison group. The hyperparameters of the four models
are calibrated repeatedly to achieve their best performance in
the same way as LSTM neural network. Specifically, for SVM
and BP neural network, the input time lag is set to 3. Thus the
dimensions of input variable are 12, including the four input
variables of LSTM network in 3 consecutive time steps. In
SVM, the best regularization parameters C and G are 1.2 and
1000, respectively. The determined BP neural network
contains two hidden layers, and the number of neurons in
the hidden layers is 100 and 50, respectively. In NARX
neural network, the number of input delay is 3 and the two
hidden layers both contain 30 neurons. The EKF model is
built based on the application of unit load finite element
analyses [42]. As a LSTM network can automatically cal-
culate the optimal time lags, it does not need to specify time
window size.

The models of the LSTM network and comparison group
are programmed by MATLAB language. Based on the
predicted stress histories for the validating data set, the
performance of different models are shown in Table 3. The
model with the best performance is marked in bold. It is
clear that a LSTM network outperforms other models.
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According to the comparison, the performance of the
predicted results is the best with the use of a LSTM network,
followed by NARX neural network, BP neural network, and
SVM; the use of EKF is the worst. The EKF is obviously
inferior to other intelligence approaches, which is caused by
many hypotheses of statistical model in this model. The SVM
shows weakness when compared with other deep learning
networks. The NARX neural network and LSTM network,
which are recurrent neural networks, show better perfor-
mance than other models. Moreover, the memory cells
enable the LSTM network to better capture nonlinear dy-
namics in long time term than other models.

Under real driving conditions, the structural health
monitoring system estimates the damage value with the
deviation of approximately 17% in comparison with mea-
surements. In consideration of large data size, this result is
satisfying. The major source of the error lies in the following
aspect. The training data set is collected from limited driving
cycles, while the data set to validate the LSTM neural net-
work is fully random.

6. Conclusion and Future Work

In this paper, a novel health monitoring system based on a
long short-term memory (LSTM) network is proposed to
estimate the remaining fatigue life of automotive suspen-
sions. The system applies a LSTM-based load identification
method to predict sequential fatigue loads from available
sensory signals. According to the comparison with other
methods (SVM, BP, NARX, and EKF), the LSTM network
can improve the accuracy in remaining fatigue life esti-
mation. Furthermore, it is concluded that the LSTM network
makes the proposed method effective and promising to
capture nonlinear dynamics in large time-series sensory
data. This research can inspire more studies in health
monitoring of automotive components.

In the future, three major works are needed to make the
health monitoring system more accurate and adaptive with
higher robustness. Firstly, larger database, which contains
experimental data set under more driving cycles, will be
built. Secondly, the improvement of the proposed LSTM
network or exploration of new algorithms is in our plan. For
example, a combination of a LSTM network and a con-
volutional neural network has shown its advancement
[43-45]. Thirdly, various uncertainty sources that affect the
robustness of the monitoring method will be taken into
consideration, such as the subtle structural differences
among the same vehicles, the differences of dynamic stress
responses in different life-span stages when the vehicle is
under the same driving cycles, and uncertainty quantifica-
tion of the predicted remaining fatigue life.

Shock and Vibration
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