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Full-ceramic ball bearings are widely applied in wide temperature ranges due to their excellent thermal shock resistance, and the
condition monitoring and fault diagnosis are mainly conducted through the spectrum analysis based on the defect frequencies.
However, the outer ring has a spinning motion in the temperature-related fit clearance, which leads to the deviation of raceway
defect frequencies, and is not conducive to the fault diagnosis. In this paper, the temperature-related fit clearance is considered in
the dynamic model, and defects are added on the inner raceway and outer raceway. 1e motions of the rings are calculated and
analyzed in the frequency domain, and the trends of peak frequencies with temperature are investigated. Simulation and ex-
perimental results show that the spinning speed of the outer ring increases with temperature, and the defect frequencies exhibit
obvious deviation in wide temperature ranges. In a temperature range of 500K, the defect frequencies exhibit deviations of over
3%, which is obvious in the defect frequency identification. 1e results provide insights on the full-ceramic ball bearing dynamics
and help with the fault diagnosis and status monitoring of the relevant devices.

1. Introduction

Rolling bearings are fundamental elements in rotary ma-
chines, whose operation stability is significant for the whole
mechanical system. In many advanced areas such as aero-
space and nuclear industries, rolling bearing systems often
work in wide temperature ranges, thus providing higher
requirements for the thermal shock resistance of rolling
bearings. Full-ceramic ball bearings exhibit more stability in
wide temperature ranges due to the small thermal defor-
mation and are, therefore, more preferred over steel bearings
in working conditions with wide temperature ranges [1, 2].
1e balls and rings of full-ceramic ball bearings are made of
engineering ceramic materials such as silicon nitride and
zirconia, thus providing high stiffness and wear resistance to
the bearing system. In the continuous operation of ceramic
bearing systems, defects such as cracks and spallings often
appear on the inner and outer raceways under impacts. 1e
ceramic bearing components have poor resistance to surface
cracking and spalling as a result of the unavailability of

plastic binding phases, which results in the sharp degrading
in performance when defects occur.1erefore, the condition
monitoring and fault diagnosis for ceramic bearings are
extremely important for the stable operation of related
devices. Recently, the fault diagnosis is mainly conducted in
the frequency domain, and the peak frequencies of the
bearing system are compared with the preobtained defect
frequencies for fault identification. For full-ceramic bearing
systems, the outer ring becomes loose due to the temper-
ature-related fit clearance.1emotion of the outer ring leads
to nonlinear interactions between bearing components, and
the defect frequencies also vary obviously, which need to be
studied in detail.

Setting up dynamic models is one of the main ap-
proaches to the interactions between bearing components,
and many studies have been carried out in the recent years
[3–7]. Xi et al. [8] presented a dynamic model of the spindle
bearing system with ball bearing and spindle housing and
carried out investigations on the bearing performance in
different working conditions. Bizarre et al. [9] formulated a

Hindawi
Shock and Vibration
Volume 2021, Article ID 6650798, 13 pages
https://doi.org/10.1155/2021/6650798

mailto:wzn1404589743@126.com
https://orcid.org/0000-0003-4542-183X
https://orcid.org/0000-0001-7555-4612
https://orcid.org/0000-0003-1936-8289
https://orcid.org/0000-0002-6267-4698
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6650798


ball bearing model with five degrees of freedom accounting
for the effects of the elastohydrodynamic effect and sug-
gested that the contact between bearing elements was af-
fected by axial and moment loads and lubrication
conditions. Li et al. [10] established a mechanical model of
ball bearing with a localized defect on the outer raceway and
analyzed the change of contact angles and load distributions
with varying rotation speeds. Yan et al. [11] considered the
skidding effect between balls and rings in the fault dynamic
model and applied the impulse envelope signal phase in the
fault signature enhancement to eliminate the order deviation
and vagueness phenomenon. Molano et al. [12] built a
bearing dynamic model with localized faults on the inner
ring and outer ring for the Independent Cart Conveyor
System and considered the modulation of load on the
bearings and random contributions to get the fault features
in the frequency domain. Yu et al. [13] took the time-varying
effect caused by the distributed and localized faults into
consideration and found that the faults not only influenced
the system on the dynamic behaviors but also on the geo-
metric topographies. It is generally accepted that the surface
defects affect the interactions between bearing components
by changing the contact forces, and the defect frequencies
are obtained through the relative motions between rings and
balls [14–16]. However, for full-ceramic ball bearings, the fit
clearance between the outer ring and the pedestal changes
greatly in wide temperature ranges. 1e relative motions
between the rings need to be considered to ensure the defect
frequencies.

1e fit clearance exists widely in bearing systems and
causes nonlinear dynamic behaviors inevitably [17]. Chen
and Qu [18] studied the effect of fit clearance on the vi-
bration response and pointed out that the fit clearance led to
the periodic contact between the outer ring and the pedestal.
Cao et al. [19] considered the effect of fit clearance in the
bearing-rotor-pedestal coupled model and found that
multiple harmonics appeared in the response due to the
nonlinear self-oscillation caused by the fit clearance. Mao
et al. [20] proposed a model with the ring flexibility and
pedestal contact force, and the results showed that the fit
clearance made an impact on the system vibration by
changing the load distribution. It has been proved in pre-
vious studies [21, 22] that the fit clearance for full-ceramic
bearing had a nonlinear growth with the working temper-
ature, and the outer ring made an orbit-spinning compound
motion in the pedestal with the effect of friction torque. As a
result, it can be predicted that changes will occur to the
relative velocities between the balls and rings. 1e change of
relative velocities directly leads to the deviation of defect
frequencies and brings difficulties to the fault detection of
full-ceramic bearing systems at different temperatures.

1erefore, a precise dynamic model with faults and the
effect of temperature-related fit clearance is quite essential.
In this study, the interactions with the effect of fit clearance
are analyzed, and the relative motions between balls and
rings are obtained for the defect frequency deviation. 1e
model is presented in Section 2. 1e impacts of fit clearance
on the outer ring motions are analyzed in Section 3. In
Section 4, the calculation values are compared with the

experimental results for verification. 1e trends of the
motion with working conditions are discussed in Section 5.
Conclusions are presented in Section 6.

2. Fault Dynamic Model with Fit Clearance

1e full-ceramic bearings are usually installed in steel
pedestals. For the convenience of assembling, the fits be-
tween the outer ring and the pedestal are usually set as
clearances, leaving a positive clearance to make it easier to
adjust the axial position of the bearing. However, when the
working temperature changes, the difference in thermal
deformation between the outer ring and the pedestal leads to
the variance in fit clearance. Assuming that the thermal
deformation of the components is uniform in all directions,
the deformation anistropy of the ceramic material and the
boundary effect that occurred at the edges are ignored. 1e
bore diameter of the outer ring and the outline diameter
grow synchronously, and the deformation is shown in
Figure 1.

In Figure 1, the dashed lines show the outlines at the
initial temperature T0, while the solid lines show the outlines
after deformation. Here, D1 shows the initial diameter of the
pedestal, and L is the initial pedestal width. D0 is the initial
bore diameter of the pedestal, and d0 is the initial diameter of
the outer ring. 1e initial fit clearance δ0 can be expressed as

δ0 � D0 − d0. (1)

And, the fit clearance after thermal deformation can be
expressed as

δ0′ �

���������������������������������
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2
1 1 + λpΔT􏼐 􏼑

3
− D

2
1 − D

2
0􏼐 􏼑 1 + 3λpΔT􏼐 􏼑

1 + λpΔT

􏽶
􏽴

− d0 · 1 + λo · ΔT( 􏼁,

(2)

where δ0′ is the fit clearance after deformation, λp is the
thermal deformation coefficient of the pedestal, λo is the
thermal deformation coefficient of the outer ring, and ΔT is
the temperature range and can be expressed as

ΔT � T − T0, (3)

where T is the working temperature.1en, the contact model
with clearance is shown in Figure 2.

In Figure 2, the coordinate system {O; X, Y, Z} is set as
the reference system, in which O is the center of the pedestal
bore, OX is the axial direction, and OY and OZ are radial
directions. 1e coordinate system {Oi; Xi, Yi, Zi} shows the
position of the inner ring, and {Oo; Xo, Yo, Zo} shows the
position of the outer ring. Oi is set at the center of the inner
ring, andOo is set at the center of the outer ring.1e balls are
driven by the inner ring and slide along the outer ring
raceway. di is the diameter of the inner raceway, dm is the
pitch diameter, and do is the diameter of the outer raceway.
Here, the cage is not shown for clarity. As the thermal
deformation of the ceramic component is relatively small,
the thermal deformation of the components is regarded as
free expansion, which is the same as the outer ring. Only the
radial motions of the bearing system are discussed in this
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paper, so the movements around OY and OZ are ignored.
When the balls are running on the regions without defects,
the motion of the inner ring can be described as

Fecosϕi − 􏽘
N

j�1
Qijcosψj + FRijsinψj􏼐 􏼑 � mi €yi , (4)

Fesinϕi − 􏽘
N

j�1
Qijsinψj − FRijcosψj􏼐 􏼑 − mig � mi €zi , (5)

where Fe shows the centrifugal force, ϕi is the eccentric angle
in {O; Y, Z}, Qij is the contact force acting on the inner ring,
FRij is the friction force between the inner ring and the jth
ball in the YOZ plane, ψj is the azimuth angle of the jth ball in
{Oi; Yi, Zi}, mi is the mass of the inner ring, N is the total
number of balls, and xi and yi are displacements of the inner
ring, respectively. Here, the mass and force of the rotor are
transferred and lumped on the inner ring, and the motion of
the outer ring is shown as

􏽘

N

j�1
Qojcosϕj − FRojsinϕj􏼐 􏼑 − Qpcosϕo + Fpsinϕo � mo €yo , (6)

􏽘

N

j�1
Qojsinϕj + FRojcosϕj􏼐 􏼑 − Qpsinϕo − Fpcosϕo − mog � mo €zo , (7)
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Figure 1: 1ermal deformation. (a) 1e pedestal. (b) 1e outer ring.
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whereQoj is the contact force acting on the outer ring, FRoj is
the friction force in the YOZ plane, mo is the mass of the
outer ring, Jo is the rotary inertia, yo and zo are displacements
of the outer ring along OY and OZ directions, ωo is the
rotation speed around Oo, db is the ball diameter, Qp is the
contact force from the pedestal, Fp is the friction force on the
outer ring, ϕj is the azimuth angle in {Oo; Yo, Zo}, and ϕo is
the eccentric angle of the outer ring in {O; Y, Z}. For the
azimuth and eccentric angles, OY is set as the reference
direction, as shown in Figure 3.

In Figure 3, eo is the distance between O and Oo and can
be expressed as

eo �

������
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o + z

2
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􏽱

, (9)

where ei is the distance between O and Oi and can be
expressed as

ei �

������

y
2
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2
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􏽱
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1e azimuth of ψj can be considered to change uniformly
as the balls are driven by the inner ring, and ϕj is related with
ψj as
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where Δϕ can be obtained through the cosine theorem as

cosΔϕ �
di + dm( 􏼁

2
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2
􏽨 􏽩 1 + λo · ΔT( 􏼁

2
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2
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2 . (12)

When defects occur on the raceways, the balls pass
through the defect area in sequence and bring about impacts
due to the interrupted contacts, as shown in Figure 4.

In Figure 4, ψsi shows the azimuth of the defect on the
inner raceway, ϕso shows the azimuth of the defect on the
outer raceway, and the sizes of the defects are denoted by θsi
and θso. For cases with a defect on the inner raceway, when
the jth ball enters the defect area, it loses contact with the
inner raceway at first and then has an impact with the
raceway at ψj �ψsi. Fij is the contact force acting on the inner
ring when ψj �ψsi and only counts when ψj �ψsi. θi shows
the angle between Fij and ψsi, which can be obtained through

sin θi �
di

db

· sin
θsi

2
. (13)

Assuming that the motions of the balls on the raceways
are pure rolling, the orbit speed of the balls can be expressed
as

ωm �
ωidi + ωodo

2dm

1 + αo · ΔT( 􏼁. (14)

And, Fij can be expressed as

Fij �
mi ωi − ωm( 􏼁

2
di cos θsi/2( 􏼁

2 cos θi

1 + αo · ΔT( 􏼁. (15)

1erefore, when an impact occurs on the inner raceway,
equations (4) and (5) should be revised as

Fecosϕi − 􏽘
N

j�1
Qijcosψj + FRijsinψj + Fijcos ψsi − θi( 􏼁􏽨 􏽩 � mi €yi ,

(16)

Fesinϕi − 􏽘
N

j�1
Qijsinψj − FRijcosψj + Fijsin ψsi − θi( 􏼁􏽨 􏽩

− mig � mi €zi

.

(17)

For cases with a defect on the outer raceway, Foj is the
impact force when ϕj � ϕso and only counts when ϕj � ϕso. θo
is the angle between Foj and ϕso, which can be obtained
through

sin θo �
do

db

· sin
θso

2
. (18)

And, Foj can be expressed as
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1en, when an impact occurs on the outer raceway,
equations (6)–(8) should be revised as
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Fp and Qp are taken into consideration only when the
outer ring is in contact with the pedestal, that is,

eo ≥
δ0′
2

. (23)

Assuming that the contact force submits Hooke’s law
within the small deformation, that is,

Qp � kp · eo −
δ0′
2

􏼠 􏼡. (24)

1e friction force Fp is related with Qp when the outer
ring is in contact with the pedestal, and the direction of Fp
depends on the rotation of the outer ring, that is,

Fp � fp · Qp ·
_zocosϕo − _yosinϕo + ωo · d0 · 1 + λo · ΔT( 􏼁/2( 􏼁

_zocosϕo − _yosinϕo + ωo · d0 · 1 + λo · ΔT( 􏼁/2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(25)

where fp is the friction coefficient between the outer ring and
the pedestal. When eo < δ0′/2, it can be considered that the
outer ring separates from the pedestal, andQp � Fp � 0.1en,
it is obvious that, as the working temperature increases, the
fit clearance becomes larger, and the outer ring spins in the
pedestal bore with the effect of Fp. It can be inferred that ωo
has a complex variance in a wide temperature range due to
the fit clearance. When ωo changes, the impact frequency
also changes, as shown in equations (14)–(21), and the effect
of the fit clearance can be revealed in the dynamic response
of the inner ring and outer ring.

3. Numerical Simulation

To test the performance of the full-ceramic bearing system,
numerical simulations at different temperatures are essen-
tial. 1e thermal deformation of the bearing and pedestal are
expressed in equations (1)–(3), and the clearance between
the outer ring and pedestal can be used as the geometry
boundary conditions; then, the motions of the bearing can

be obtained through equations (16) and (17) and (20)–(22).
Assuming that, at time t� 0, the ball of j� 1 is located at
ψj � 0°, the outer ring is in contact with the pedestal at ϕo � 0°,
and the radial load is set as 100N. 1en, the dynamic re-
sponse of the inner ring and outer ring can be obtained
through iterative calculation, and the flowchart is shown in
Figure 5.

Here, the initial temperature is set as T0 �100K, and the
initial fit clearance δ0 is 0.003mm.1e structural parameters
of the full-ceramic ball bearing and the pedestal are listed in
Table 1.

1e pedestal is made of steel, and the balls and rings of
the full-ceramic ball bearing are made of silicon nitride. 1e
physical parameters of the bearing components are included
in Table 2.

3.1. Dynamic Response with the Inner Raceway Defect in
Different Temperatures. 1e maximum temperature range
ΔT is set as 500K in this study, and the working temperature
T, which can be expressed as T�T0+ΔT, ranges from 100K
to 600K.1e rotation speed of the inner ring is set as 2400 r/
min in the anticlockwise direction, and the radial load is set
as 100N. It is assumed that the shapes of the raceways are
ideal arcs, and the balls are ideal spheres with identical
diameters, the effects of surface waviness and shape errors
are ignored. 1e friction coefficient between the bearing
components is 0.1, and the friction coefficient between the
outer ring and the pedestal is 0.2. 1e external shock is not
taken into consideration. At the initial time t� 0, the defect is
located at ψsi � 0°. 1e size of the defect is θsi � 2°, and the
balls are not in touch with the bottom of the defect. 1e
temperature step is 100K, and the vertical speed _zi is selected
as the indicator. 1e time step for the calculation is 0.0004 s,
and the dynamic responses in different temperatures are
shown in Figure 6.

It can be seen from Figure 6 that the velocity of the inner
ring is approximate to sinusoidal variation, and the am-
plitude gradually increases with working temperature. 1e
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peak values appear periodically in the time domain, which is
caused by the impacts on the defect area. To get the fre-
quency components in the velocities, the results are pro-
cessed by FFT with the analysis frequency of 2500Hz, as
shown in Figure 7.

As indicated in Figure 7, the frequency components
contained in the inner ring velocities are related with the
rotating frequency and defect frequency. Obviously, the
peaks at 40Hz and 80Hz correspond to the rotating fre-
quency and doubling rotating frequency, and the peak near
200Hz is the defect frequency. 1e defect frequency and
amplitudes at each peak in different temperatures are given
in Table 3.

1e peak corresponding to the rotating frequency is the
highest, which implies that the centrifugal force caused by
the bearing clearance and fit clearance makes the most
contribution to the inner ring vibration. 1e doubling ro-
tating frequency can also be seen in the result, but the
amplitude is much smaller. As the fit clearance increases
with the working temperature, the maximum eccentricity
grows, and the centrifugal force from the rotor and the inner
ring increases to bring about the amplitude growth of the
rotating frequency-related components. With the growth of
the centrifugal force, the impact of balls crossing the defect
area also becomes severer, and the amplitude of the defect
frequency also increases with the temperature, as shown in
Figure 7.

According to equation (22), the outer ring begins to
rotate as the outer ring becomes loose with the increasing fit
clearance. 1e outer ring has an opposite rotation direction
to the inner ring, and the orbit speed of the balls decreases
according to the pure rolling hypothesis. 1en, the relative
velocities between the inner ring and the balls increase, and
the characteristic frequency for the defect on the inner
raceway turns larger, which has the consistent trend as
Table 3.

3.2. Dynamic Response with the Outer Raceway Defect in
Different Temperatures. 1e working condition parameters
are set the same as in the previous section, and the tem-
perature also ranges from 100K to 600K. At the initial time
t� 0, the defect is set at ϕso � 270°, and the defect has an
opening angle of θso � 2°.1e balls never touch the bottom of
the defect during rotation.1e time step is 0.0004 s; then, the
vertical speed of the outer ring _zo is calculated, as shown in
Figure 8.

Similar with the inner-ring vertical dynamic response
displayed in Figure 6, the vertical vibration of the outer ring
exhibits obvious periodicity, and the overall amplitude in-
creases with temperature. 1e frequency domain result is
shown in Figure 9.

Compared with the inner ring velocities, the frequency
domain results for outer ring velocities contain more peak
frequencies. 1e peak frequencies at 40Hz, 80Hz, and
160Hz are 1, 2, and 4 times rotating frequencies, respec-
tively. 1e 3 times rotating frequency is close to the defect
frequency, and the amplitudes at 3 times the rotating fre-
quency are, therefore, hard to distinguish. 1e defect

Input component
positions

Temperature range DTBearing structural
parameters

Sizes of components after
thermal deformation

Start at t = 0

Obtain ψj, and ϕjObtain Fe, Qij, and Qoj

Obtain FRij, and FRoj Obtain Qp, and Fp

Obtain ϕsi, and θi

Obtain Fij

Obtain ϕsi, and θi

Obtain Foj

Obtain yi, and zi Obtain yo, zo, and ωo

No NoYes Yes

Exceed
time limit?

End

ψj = ψsi? ϕj = ϕso?

t = t + Δt

Figure 5: Calculation flowchart.

Table 1: Parameters of ceramic ball bearings and the pedestal.

Item Value
Bearing pitch diameter (inch) 1.318
Contact angle (degree) 0
Bearing width (mm) 15
Ball diameter (inch) 0.3125
Number of balls 8
Pedestal diameter (mm) 120
Pedestal width (mm) 10

Table 2: Physical parameters of the bearing components.

Item Value
Bearing density (kg/m3) 3100
Pedestal density (kg/m3) 7850
Bearing elastic modulus (Pa) 3.3×1011

Pedestal elastic modulus (Pa) 2.16×1011

1ermal deformation coefficient of the pedestal (1/K) 1.25×10−5

1ermal deformation coefficient of the bearing (1/K) 2.8×10−6

Contact stiffness of the pedestal (N/m) 2.5×108
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frequency and amplitudes at each peak in different tem-
peratures are given in Table 4.

As shown in Figure 9 and Table 5, the amplitudes at the
characteristic frequencies related with the rotating speed
generally increase with temperature, indicating that the
centrifugal force, which increases with the enlarged fit
clearance, is the main factor affecting the responses at these
frequencies. When the outer ring makes a spinning motion
reverse to the inner ring in the fit clearance, the orbit speed
of the balls decreases, and the impact frequency caused by
the outer ring defect increases according to equation (19).
1erefore, the defect frequency grows with temperature, and
the amplitude of the defect frequency also increases with the
centrifugal force basically.

4. Experimental Investigation

To test the accuracy of the dynamic model with raceway
defects at different temperatures, an experimental investi-
gation is conducted on a rotor-bearing test rig to compare
with the calculation results. 1e test rig is displayed in
Figure 10.

In Figure 10, the ceramic bearings are installed in the
steel pedestals, and a pedestal is placed in an incubator. 1e
structural parameters of the bearing in the experiment are
the same as in Table 1. 1e shaft is driven by the motor
through the coupling, and the inner rings of the bearings run
synchronously with the shaft. 1e rotation speed of the shaft
can be adjusted manually through the motor frequency, and
the plates on the shaft act as the radial load. 1e incubator is
set for heat preservation and covers a bearing and a pedestal.
1e remote sensing thermometer is used to obtain the
temperature, and the accelerometer is set to get the dynamic
response. At the beginning, the liquid nitrogen is poured
into the incubator to lower the working temperature. 1e
rotation speed of the motor is set stable as 2400 r min−1; the
weight of the rotor and plates is 100N. 1en, the working
temperature gradually increases due to the heat generation
and exchange, and the wide temperature ranges are simu-
lated in the incubator. Enough liquid nitrogen can keep the
initial temperature below 100K, and the laboratory tem-
perature is 298K. After reaching the laboratory temperature,
the working temperature continues to rise due to the heat
production of the bearing and finally stops at about 340K. To

Table 3: Peak frequencies and amplitudes of inner ring vibration in different temperatures.

Temperature (K) 100 200 300 400 500 600
Amplitude at the rotating frequency (mm/s) 1.70 1.75 1.86 1.99 2.14 2.35
Amplitude at the doubling rotating frequency (mm/s) 0.30 0.42 0.50 0.58 0.68 0.80
Defect frequency (Hz) 197.40 198.65 199.90 201.15 203.65 204.90
Amplitude at the defect frequency (mm/s) 0.72 1.08 1.21 1.24 1.39 1.87
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Figure 8: Vertical velocities of the outer ring in various temperatures. (a) T�100K. (b) T� 200K. (c) T� 300K. (d) T� 400K. (e) T� 500K.
(f ) T� 600K.
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get the performance of the bearing with temperature ranges,
the signals at T�100K, 200K, and 300K are collected. 1e
bearing near the coupling is a healthy bearing, while the
bearing in the incubator is with a raceway defect. 1e defects
on the inner and outer raceways are initially located at the
bottom positions, with ψsi � ϕso � 270°. 1e sampling fre-
quency is set as 16384Hz. Two cases with the inner ring

defect and outer ring defect are investigated in the experi-
ment, and the vertical accelerations at the pedestal are
collected, as shown in Figure 11.

Two cases with the inner raceway defect and outer
raceway defect are shown in Figure 11. 1e black solid lines
show the performance at T�100K, while the red dashed
lines and blue dot-dashed lines show the performances at
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Figure 9: Frequency domain results for outer ring velocities.

Table 4: Peak frequencies and amplitudes of the outer ring vibration in different temperatures.

Temperature (K) 100 200 300 400 500 600
Amplitude at the 1× rotating frequency (mm/s) 1.89 2.02 2.19 2.40 2.61 2.83
Amplitude at the 2× rotating frequency (mm/s) 1.04 1.14 1.22 1.35 1.48 1.58
Amplitude at the 3× rotating frequency (mm/s) 0.34 0.62 0.42 0.62 0.81 0.92
Amplitude at the 4× rotating frequency (mm/s) 0.18 0.21 0.25 0.34 0.39 0.42
Defect frequency (Hz) 122.44 122.44 123.69 123.69 124.94 126.19
Amplitude at the defect frequency (mm/s) 1.49 1.95 2.11 1.67 2.36 2.89

Table 5: Comparison between the simulation and experiment results.

Temperature
(K)

Simulation result of inner
raceway defect frequency

(Hz)

Experimental result of inner
raceway defect frequency (Hz)

Simulation result of outer
raceway defect frequency

(Hz)

Experimental result of outer
raceway defect frequency (Hz)

100 197.40 197.80 122.43 122.80
200 198.65 199.00 122.43 123.20
300 199.90 200.40 123.69 124.00
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T� 200K and 300K, respectively. In Figure 11(a), the peaks
at 1 × and 2 × rotating frequencies are in consistence in
different temperatures. However, for the defect frequency,
which occurs at about the 5 × rotating frequency, the peak
deviates with temperature. It can be seen that the peak
frequency for the inner raceway defect increases with
working temperature, and the amplitude also grows.
Similar situations can also be seen in Figure 11(b), the
peaks at 1 ×, 2 ×, 3 ×, and 4 × rotating frequencies remain
unchanged in the wide temperature range, but the char-
acteristic frequency for the outer raceway defect moves
towards right. 1e amplitudes at the 1 × rotating frequency
and defect frequency increase significantly and vary less at
higher orders of rotating frequencies, and the trends are in
consistent with the simulation results. 1e comparison

between the defect frequencies in simulation and experi-
mental results is shown in Table 5.

As shown in Table 5, the defect frequencies of the ex-
perimental results match well with the simulation results and
have the same trends with working temperature. 1erefore,
it can be inferred that the dynamic model with temperature-
related fit clearance is suitable for the analysis of the full-
ceramic bearing system, and the defect frequencies deviate
with the working temperature.

5. Discussion

As shown in the simulation and experimental results,
when the working temperature of the full-ceramic bearing
system increases, the fit clearance between the outer ring
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Figure 10: Test rig used in the experiment.
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Figure 11: Vertical accelerations at different temperatures with different defects. (a) Inner raceway defect. (b) Outer raceway defect.
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and the pedestal increases. Due to the friction forces from
the balls and pedestal, the outer ring spins in the reverse
direction to the inner ring, leading to the increase of inner
raceway defect and outer raceway defect characteristic
frequencies. On the contrary, the motion of the outer ring
in the fit clearance makes the dynamic response of the
bearing system more complex and brings about more
frequency components related with the rotation speed.
1e outer ring is more affected by the friction and impact
forces from the pedestal; therefore, compared with the
dynamic response with the inner raceway defect, the
dynamic response with the outer raceway defect contains
more frequency components related with the rotation
speed. When the working temperature is fixed, the ro-
tation speed of the outer ring can be regarded as a constant
value, and the rotation speed affects the defect frequency
proportionally. As a result, the characteristic frequency of
the outer raceway defect has less deviation with tem-
perature compared with that of the inner raceway defect.
In Table 4, the defect frequency has no change from
T �100 K to 200 K and 300 K to 400 K. 1is is because the
sampling frequency is not high enough, and the frequency
deviation is smaller than the frequency step. According to
the simulation results, the inner raceway defect frequency
has a deviation of 3.1% and the outer raceway defect
frequency has a deviation of 3.8% in the wide temperature
range from 100 K to 600 K. 1erefore, it can be inferred
that the deviation should be considered to make it more
accurate for the status monitoring of the full-ceramic
bearing system.

6. Conclusions

1e dynamic model of full-ceramic ball bearing systems
with the effect of temperature-related fit clearance is
established in this paper, and the motions of the bearing
rings are calculated at different temperatures. 1e defect
frequencies are investigated, and the simulation results are
verified through experiments. Results show that when the
temperature increases, the fit clearance grows due to the
thermal deformation difference. 1e peak frequencies re-
lated with the rotation speed stay still, and the amplitudes
grow due to the centrifugal force.1e outer ring spins in the
reverse direction to the inner ring, thus changing the
relative motion between balls and rings and leading to the
deviation of defect frequencies. 1e spinning speed of the
outer ring increases with the temperature, and the char-
acteristic frequencies for the inner raceway and outer
raceway grow monotonously. 1e defect frequencies
change in proportion, and the deviation of inner raceway
defect frequency is smaller than that of outer raceway defect
frequency. 1e defect frequencies at different temperatures
can be revised through the results in this study, and the
research findings provide theoretical foundations for fault
diagnosis in wide temperature ranges. 1e results in this
study also proved that the defect frequency deviation needs
to be considered in the condition monitoring of full-ce-
ramic bearing systems, and the defect frequencies need to
be revised.
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