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In order to identify different lubrication states, lubrication experiments were carried out on a Bruker UMT-3 tester. The ex-
perimental results show that the frequency band energy characteristics of friction vibration signals are different under different
lubrication states. Based on this, a lubrication state recognition method with ensemble empirical mode decomposition (EEMD)
and support vector machine (SVM) was proposed. The vibration signals were decomposed into a finite number of stationary
intrinsic mode functions (IMFs) with the EEMD method. The first six IMF components containing the main friction information
were retained to calculate the energy ratio and construct the feature vector. The experimental results show that the mixed
lubrication state can be identified by hundred percent, and there is a slight confusion between boundary lubrication and dry
friction. The results show that frequency band energy of friction vibration signals is an effective feature to identify different

lubrication states, and the proposed method can be used to identify different lubrication states.

1. Introduction

It is well known that friction vibration is caused by the
relative movement of friction pairs. Friction vibration can
reflect the characteristics and wear state of the friction
system. Compared with friction coefficient, wear surface,
and wear debris, friction vibration signals can be acquired
online and in real-time without affecting the normal op-
eration of the equipment. Real-time monitoring of equip-
ment lubrication status is of great help to the efficient
operation and maintenance of machinery and equipment.
As a typical nonlinear signal, the feature extraction of
friction vibration has always been a difficulty in research. In
recent years, the study mainly focuses on the qualitative
analysis of friction vibration, but the quantitative analysis is
rarely reported. Sun decomposed the vibration signals of
reciprocating sliding friction pair by wavelet packet and
analyzed the chaotic characteristics of the friction vibration
[1]. Liu et al. analyzed the correlation between the frictional
vibration in the normal and tangential directions and
pointed out that the friction vibration in different directions
has strong correlation [2]. Li et al. made multifractal analysis
of the friction vibration signals in the running-in process [3].

In recently years, empirical mode decomposition (EMD)
has been widely used to deal with nonlinear signal problems
[4-7]. It adaptively decomposes signals into several sta-
tionary basic mode components by subtracting the local
mean of signals in an iterative way. Because of the defects of
the algorithm, false intrinsic mode functions may be gen-
erated in the decomposition results. Therefore, Huang
proposed the ensemble empirical mode decomposition
method (EEMD), which solves the modal aliasing problem
of EMD by adding white noise components to the original
signals to maintain the continuity of signals in different
regions [8]. The most common method of EMD and its
improved algorithm in mechanical fault diagnosis is to
combine this method with other technologies to extract fault
frequency [9-13]. However, there is no obvious periodicity
in friction vibration and it is difficult to distinguish the
lubrication state by the change of frequency. When the
lubrication state changes, the energy in the same frequency
band of the friction vibration signal will have a big differ-
ence. The signal energy in these frequency bands contains
the main friction information, and the change of the signal
energy in one or several frequency bands represents the
change of the lubrication states. Therefore, the lubrication
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states can be distinguished according to the change of fre-
quency band energy.

Support vector machine (SVM) is an intelligent opti-
mization algorithm proposed by Vapnik et al. in 1995 on the
basis of statistical learning theory [14, 15]. Based on the
principle of structural risk minimization, the SVM can solve
practical problems such as small samples, high dimensions,
nonlinearity, and local minimum points well. A large
number of studies have shown that SVM parameters are the
main factors affecting the performance of support vector
machines. The differential evolution (DE) algorithm is an
optimization algorithm of heuristic parallel random search
based on floating-point vector coding proposed by Storn and
Price in 1995 [16]. The principle of the algorithm is relatively
simple with fewer control parameters. The algorithm has a
strong global search ability and robustness and can improve
the speed of optimization. In recent years, scholars have
done a lot of work to improve the optimization performance
of this method. In this paper, in order to improve the
classification accuracy of support vector machine, the kernel
parameters and penalty parameter of SVM are optimized by
using the DE algorithm.

Based on the energy distribution characteristics of
friction vibration, a lubrication state recognition method
combining EEMD and SVM was proposed in this article. The
vibration signals were decomposed by EEMD, and the en-
ergy ratio of the high-order intrinsic mode function (IMF)
components containing the main friction information was
calculated. Then, the standard mode feature vector was
constructed with the energy ratio as the element, and the
different lubrication states were identified by the SVM.

The innovations and main contributions of this paper are
as follows:

(1) Frequency band energy is innovatively used as a
characteristic to distinguish different lubrication
states

(2) The IMFs are innovatively applied to construct the
energy eigenvector of frequency band

(3) A lubrication state identification method based on
EEMD and SVM is proposed to effectively monitor
the lubrication state of equipment

The remainder of this paper is organized as follows:
Section 2 presents the EEMD method, SVM method, DE
algorithm, and the recognition method. The design and
implementation of operational different lubrication states’
tests are provided in Section 3. The results and discussion
have been presented in Section 4. Finally, Section 5 would
conclude the paper.

2. Method

2.1. EEMD. To solve the modal mixing problem of EMD,
EEMD was invented on the basis of EMD algorithm in 2009
[8]. By adding white noise components to the original signal,
the signals in different regions are kept continuous and the
degree of mode aliasing is reduced. The decomposition steps
are as follows:
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(1) A Gaussian white noise is added to the original signal
to produce a new signal, that is,

x; (1) = x(8) +m, (¢), (1)

where x(t) is the original signal and #;(t) is the
Gaussian white noise.

(2) The signal x; (t) is decomposed by EMD, that is,

J
X () =) ¢ (1) +ry(1), (2)
j=1

where ¢; ; (t) is the ™ IMF decomposed after adding
white noise for the i time and Tij (t) is the re-
mainder term.

(3) Repeat steps (1) and (2) for m times, and add white
noise signals with different amplitudes to each de-
composition to get the IMF set as follows: {Cl,j (1),
(1) i c (8) j=1,2, .., ]}

(4) Based on the principle that the statistical mean value
of unrelated sequences is zero, the average calcula-
tion is carried out for the abovementioned corre-
sponding IMF:

1 m
¢j(t) =— ;c,-,,- (t), (3)

where ¢, (t) is the j™ IMF decomposed by EEMD,
i=1,2,..,mand j=1,2,..., J.

2.2. SVM. SVM classification is a machine learning method
based on statistical learning theory and structural risk
minimization. It is applicable to both linearly separable and
linearly nonseparable samples. For more details, please refer
to [17].

With the sample (x5 v7)
(x; € R%; y, € {-1,+1}; i = 1,2,...,n), x; is a feature vector
and y; is class label. If the sample is linearly separable, then
SVM transforms the classification problem into a convex
quadratic optimization problem, as shown in the following
equation:

{ min %Ilwll2 +C ; Esty[(w-x)+b]21-¢, (4

where w is the weight vector, C is the penalty factor, £ is the
relaxation factor, and b is the bias.

The dual description of the above optimization problem
is obtained by Lagrange operator. Under the condition that
y;[(w-x;) +b] =1, the classification decision function can
be obtained, that is,

f () =5gn{zo‘i)’i(xi'x)+b* }’ ()

where «; is the Lagrange coefficient.
If the samples are linearly nonseparable, the samples in
the input space can be mapped into the high-dimensional
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linearly separable feature space by nonlinear mapping, and
the optimal classification decision function in the feature
vector can be obtained by kernel function, that is,

f(x) =sgn{2(x?yiK(xi,xj)+b* }, (6)
where K (x;, x J-) is the kernel function.

2.3. Differential Evolution Algorithm. The basic idea of DE is
to extract the search step and direction information from the
current population and add random difference and cross-
over to improve the diversity of the population. After the
above mutation and crossover operation, a temporary
population is generated. Then, one-to-one selection of the
two populations is carried out based on greedy thought to
generate a new generation of population. The population
evolves continuously according to the above method until
the termination condition of the algorithm is satisfied. The
details are described as follows:

(1) Four different individuals are randomly selected
from the population to generate a difference vector
to mutate the optimal individuals of each generation,
which can not only improve the convergence speed
of the algorithm but also maintain a high population
diversity to a certain extent, that is,

Vg+1 g+1 + k[( g+l _ g+1) +(xg+1 _ xg-v—l)]) (7)

i Xest sz 3 Sy

where v;-q“ is the mutant individual obtained from
each individual x/ of g generation by mutation
operation, xg;lt is the best individual of g+ 1 gen-
eration, and k is the scaling factor.

(2) In order to improve the diversity of the population,
the crossover operation mode is

g+1 .
v;;, rand(j)<CR,
ngrl _ 5] (8)

l %77, rand(j)>CR,

ij o
where rand () is a random value on [0, 1] and the
crossover rate (CR) is a specified constant on [0, 1].

(3) If the values of the parameters exceed the corre-
sponding bounds, they will be randomly and uni-
formly reinitialized within the given range. Then, the
target function values of all test vectors are evaluated
and selected. If the objective function value of the test
vector is less than or equal to the objective function
value of the corresponding objective vector, the next
generation replaces the objective vector with the test
vector. Otherwise, the target vector will be retained
for the next generation. The selection operation can
be represented as follows:

o L) < £ (), o
’ P f(?) < f (1),

where f is the target function.

2.4. Recognition Method. The collisions and breakage of the
rough peak between the friction pairs are characterized by
microimpact and random distribution on the contact in-
terface, which stimulates the high-frequency dynamic re-
sponse of the coupling system [18]. Therefore, the lower
orders of IMF components should be removed and the
higher orders of IMF components should be retained. As
shown in Figure 1, the proposed lubrication state recogni-
tion method based on energy characteristics with EEMD and
SVM is described as follows:

(1) Under the states of mixed lubrication, boundary
lubrication, and dry friction, the samples are sam-
pled several times at a certain sampling frequency to
obtain enough samples.

(2) The collected vibration signals are decomposed by
EEMD, and several IMF components are obtained.

(3) The energy ratio of the first n IMF components is

calculated:
+00
2 .

E;= J c]-(t)dt j=12,3,...,n

- (10)
E.
T. =—J
j [ >

Zj:1 Ej

where E; is the energy of the j™ IMF component and
T; is the energy proportion of the ;™ IMF
component.
(4) The feature
constructed.

vector T =[T},T,...,T;] is

(5) Lubrication states are classified and identified with
SVM.

3. Experiment

3.1. Apparatus. The experiments were conducted on a piece
of commercial equipment, Bruker UMT-3 tester, as illus-
trated in Figure 2. The equipment is able to control the disk
rotational speed and the load. Friction force was measured
by the sensors of the equipment. A triaxial acceleration
sensor, fixed on the pin specimen (model 356B17ICP, PCB
Piezotronics Company) with a range of +5 g and a sensitivity
of 1000 mv/g, was used to measure the vibration signal. A
data acquisition system (VibPilot, m + p international) was
used to collect the data.

3.2. Experimental Method. In order to obtain the standard
mode feature vectors of typical states, it is necessary to carry
out experiments on the experimental bench to obtain the
friction vibration signals under different lubrication states by
controlling the amount of lubricating oil to change the
lubrication states and according to the friction coefficient to
judge the lubrication states. First, the experiment was carried
out under the condition of oil lubrication. When the lu-
brication experiment lasted to the 50t min, the severe wear
experiment without lubrication was carried out, at which dry
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FIGURE 2: Schematic diagram of the UMT-3 tester. (a) Experiment device and (b) tribological pair.

absorbent cottons were used to clean the oil. Meanwhile, the
vibration signals were collected by using the triaxial accel-
eration sensor with a sampling frequency of 51200 Hz and a
sampling duration of 2s per minute.

4. Results and Discussion

4.1. Different Lubrication States. The whole experimental
process is shown in Figure 3. In the actual mechanical
operation, the friction pairs are usually in the mixed lu-
brication state, and the friction coefficient in this state is
about 0.1. In the beginning stage, the friction coefficient
experienced a short decline and then entered a stable weak
fluctuation state, corresponding to the running-in wear stage
and the stable wear state, respectively, which were analyzed
in detailed in [19]. Until the 50" minute, the oil was sucked
away, and there was only a very small amount of adsorbed oil
film between the friction pairs. The lubrication state changed
from the mixed lubrication to the boundary lubrication with
the friction factor varied between 0.25 and 0.4. With the
aggravation of wear, the oil films in the friction pairs were
destroyed. The lubrication state changed from the boundary
lubrication to the dry friction with large fluctuation of
friction factor at the 70™ minute, under which the friction
factor was greater than 0.4.

Figure 4 shows the spectrum diagram of the vibration
signals in different lubrication states. As analyzed in the liter-
ature [18], the friction vibration can be divided into low-fre-
quency and medium-high-frequency parts. The low-frequency
part corresponds to the eigenfrequency and coupling frequency
of the system. The medium-high-frequency part is closely
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1 . . 1
Mixed lubrication ilubrication
e

0.5F

0.4
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[ -
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Friction factor
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FiGure 3: Temporal variation of friction factor in different lu-
brication states.

related to the surface characteristics of the friction pair. The
impact and fracture of the microconvex bodies are characterized
by microimpact and randomly distributed on the contact in-
terface, which stimulates the medium-high-frequency dynamic
response of the coupling system. In the process of deterioration
of lubrication state, the amplitude of high-frequency compo-
nents increases continuously, which is very useful to state
recognition.

4.2. Energy Feature Vectors. The vibration signals collected
during the experiment were decomposed by EEMD. The
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FIGURE 4: Spectrum diagram of the vibration signal in different lubrication states. (a) Mixed lubrication (20" min), (b) boundary lubrication

(60™ min), and (c) dry friction (80™ min).

ensemble average times and the amplitude coefficient of
Gaussian white noise were 100 and 0.4, respectively [3].
Figure 5 shows the EEMD decomposition results of friction
vibration signals in the dry friction (80" min). The original
signal was decomposed into 10 IMF components ¢;-¢; and
a remainder term ryo. The IMF components represent fre-
quency band components of the original signal and are
arranged in order from high to low frequencies. The re-
mainder term is actually a trend line, that is, the wave with
very low frequency (very long period), which can be
regarded as the foundation of other IMF components. The
characteristics cannot be directly seen from components and
remainder term.

In this paper, the first 6 order components were retained
to calculate the energy ratio and construct the feature
vectors. Figure 6 shows the energy ratio of the friction pair
under three states. As expected, the energy distribution in
different states was markedly different.

4.3. Lubrication State Classification and Recognition with
SVM. In order to illustrate the accuracy of the method
proposed in this article, the 100 samples obtained from the
experiment were divided into two groups. 50 samples were
taken out as training samples, and the remaining 50 samples
were taken as test samples. Considering the relatively large
number of training samples and the small number of fea-
tures, polynomial kernel was used as the kernel function of
SVM [12]. Also, the differential evolution algorithm was
used to obtain the optimal penalty parameter and kernel
parameters.

The results of state recognition are shown in the con-
fusion matrix in Figure 7. In this confusion matrix, all 25
samples in the mixed lubrication state were accurately
identified. However, 2 out of 10 samples in the boundary
lubrication state were incorrectly recognized as dry friction.
For the 15 samples in the dry friction state, 3 samples were
incorrectly recognized as boundary lubrication. Confusion
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FIGURE 6: Energy ratio based on EEMD under three states. (a) Mixed lubrication (20" min), (b) boundary lubrication (60™ min), and (c) dry
friction (80 min).
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FiGure 7: Confusion matrix for the results of state recognition (ML,
mixed lubrication; BL, boundary lubrication; DF, dry friction).

between the mixed lubrication state and the dry friction state
can partly be explained by high degree of similarity between
the two states. The results suggest that the SVM method can
identify different lubrication states well.

5. Conclusion

In this article, vibration signals under different lubrication
conditions were obtained by using the friction testing ma-
chine. The friction vibration signals were decomposed by
using the EEMD method, and the medium-high-frequency
components containing the main friction information were
retained. The energy ratio of IMF components was calcu-
lated, and the feature vectors were constructed to provide the
basis for lubrication state identification. The SVM was used
to recognize the different lubrication states of friction pairs.
The results illustrate that the method presented in this work
can accurately recognize different lubrication states. The
main conclusions are as follows:

(1) The medium-high-frequency components of the fric-
tion vibration signal contained the lubrication state
information, and the retained IMF components by
EEMD decomposition can be used to construct the
energy feature vectors under different lubrication states.

(2) Mixed lubrication states can be accurately identified by
the SVM. However, there was confusion between
boundary lubrication and dry friction, and further
research is needed to improve the recognition accuracy.
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